

Outpainting Localizer

Multimedia Data Security course project

Matteo Darra (6 CFU) Leonardo Vicentini (3 CFU)

Friday 20th October, 2023

The goals of the project were:

- 1) Train and test a model for outpainting localization
- 2) Improve metrics from the obtained baseline

- Given a sequence of frame (video) in input, the model goal is to localize which areas of the frames are outpainted
- The dataset is composed of frames and relative binary masks that indicate whether or not each pixel of the frame is outpainted

• **RAFT** (Recurrent All-Pairs Field Transforms) is a model used to predict the **optical flow** of a video

Optical flow

"Optical flow is the task of estimating per-pixel motion between video frames. It is a long-standing vision problem that remains unsolved. The best systems are limited by difficulties including fast-moving objects, occlusions, motion blur, and textureless surfaces". [2]

• In this setting, RAFT is leveraged to do localization of the outpainted region

RAFT architecture

- Feature encoder
- Context encoder
- Update module
- **Outpainting Localizer**

 Usage logic: video manipulations (outpainting) generate spatial and temporal inconsistencies, detectable using optical flow

- Become familiar with the task and codebase
- Environment and code setup
 - Test script adaptation
- Check dataset integrity: identified empty folders

Metric

- F1_SCORE is a measure of a test's accuracy
- F1_SCORE formula:

$$F1_SCORE = rac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

where:

- **precision** is the number of true positive results divided by the number of all positive results, including those not identified correctly
- **recall** is the number of true positive results divided by the number of all samples that should have been identified as positive

- Baseline was obtained by training the model as-is
 - $\circ~$ Loss function: weighted softmax cross entropy
- F1_SCORE: 0.501
- Variance: 0.011

Baseline examples (good performance)

Figure 2: Frame Video type: outdoor, move; F1_score: 0.921

Outpainting Localizer

Figure 3: Generated mask

Figure 4: Ground truth mask

Baseline examples (poor performance)

Figure 5: Frame Video type: outdoor, move; F1_score: 0.050

Outpainting Localizer

Figure 6: Generated mask

Figure 7: Ground truth mask

- Started with high-level intuitions before the actual implementations
- Attempted to devise augmentations that simulated real variations that might be encountered during video frame capture
- Goal: improve model's generalization capabilities
- Strategies used:
 - \circ Horizontal flipping
 - Time warping
 - Random elastic deformation

Horizontal flipping

Rationale

- Samples doubling
- Camera movement could be biased toward a specific side, e.g. from left to right
- Vertical flipping: unrealistic case, not implemented

Figure 8: Original Outpainting Localizer

Figure 9: Flipped

- Results:
 - F1_SCORE: 0.627
 - $\circ~$ Variance: 0.016

• 25% improvement from baseline

Horizontal flipping only examples (good performance)

Figure 10: Frame Video type: indoor, still; F1_score: 0.953

Outpainting Localizer

Figure 11: Generated mask

Figure 12: Ground truth mask

Horizontal flipping only examples (poor performance)

Figure 13: Frame Video type: indoor, panrot; F1_score: 0.121

Outpainting Localizer

Figure 14: Generated mask

Figure 15: Ground truth mask

- It is a function similar to default loss function used (weighted softmax cross entropy loss)
- It achieved slightly worse results

Gamma	F1_SCORE	Variance			
0.7	0.603	0.014			
0.8	0.610	0.011			
0.9	0.568	0.016			

Table 1: F1_SCORE and variance with focal loss 15/34

Outpainting Localizer

Rationale

- Swap frame n and n-1 to simulate different camera movement
- Results:
 - F1_SCORE: 0.626
 - Variance: 0.011
- Note: time warping is added on top of the horizontal flipping augmentation with a frequency of 1/10
- No improvement from horizontal flipping but with lower variance

Random elastic deformation

Rationale

- To increase the variety of mask shapes to simulate different cameras
- To simulate slight imperfections
- Implementation leveraging TorchIO library [1]
- Parameters tuned:
 - max_displacement (MD)
 - num_control_points (CP)
- The same transformation is saved and applied to frame *n*, frame *n* + 1, mask *n*, mask *n* + 1

Random elastic deformation

Figure 16: Original

Figure 17: Original with grid

Figure 18: MD: (15,10); CP:7

Figure 19: MD: (150, 10); CP:7

Figure 20: MD: (15,10); CP:40

Figure 21: Deformed Mask

Outpainting Localizer

Random elastic deformation

Frequency	max_displacement	num_control_points	F1_SCORE	Variance
1/9	15,15	7	0.626	0.009
1/6	18,18	9	0.702	0.010
1/6	20,20	9	0.713	0.010
1/4	21,21	11	0.634	0.006

Table 2: F1_SCORE and variance as chosen parameters change (from light to heavy)

- Frequency: how frequent a random elastic deformation is applied while training the model
- Actual configuration: horizontal flipping + time warping + random elastic deformation

Outpainting Localizer

- Global F1_SCORE: 0.713
- Variance: 0.010
- Best: 0.906
- Worst: 0.439
- F1_SCORE metric improved by 42% from baseline

Figure 22: Mean F1_score per video

Best model examples (good performance)

Figure 23: Frame Video type: outdoor, panrot; F1_score: 0.957

Outpainting Localizer

Figure 24: Generated mask

Figure 25: Ground truth mask

Best model examples (poor performance)

Figure 26: Frame Video type: indoor, move; F1_score: 0.230

Outpainting Localizer

Figure 27: Generated mask

Figure 28: Ground truth mask

Best result

Figure 29: Mean F1_score by video category

Outpainting Localizer

Outpainting Localizer

Figure 30: F1_score baseline vs. best, video per video

Outpainting Localizer

Figure 31: F1_score baseline vs. best, max improvement

Outpainting Localizer

Figure 32: F1_score baseline vs. best, min improvement

Outpainting Localizer

Figure 33: F1_score baseline vs. best, score worsened

						Horizontal	Time		Random			
	${\sf F1_SCORE} {\sf Loss} \gamma$		LR BS	BS	Flipping	Warping		Elastic Deformation				
						ON/OFF	ON/OFF	F	ON/OFF	F	CP	MD
Baseline	0.501	WSCE	0.85	0.0001	12	OFF	OFF	-	OFF	-	-	-
Best	0.713	WSCE	0.85	0.0001	12	ON	ON	1/10	ON	1/6	9	20,20

Mask creation

- Binary masks are built from optical flow using a threshold on a [0,1] scale
- Threshold: 0.5
 - Effect: identified non-outpainted areas are quite small, correspond to the "stronger" areas of optical flow

Figure 34: Mask, varying threshold*

Figure 35: Ground truth mask

 Thresholds: 1 $\leq t \leq 0.5$; 0.5 $< t \leq 0.4$; 0.4 $< t \leq 0.3$; 0.3 $< t \leq 0.2$ Outpainting Localizer

Mask creation

- Majority of ground truth masks are characterized by large non-outpainted areas
- New threshold: 0.4
 - Effect: identified non-outpainted areas are bigger, containing also less strong areas of optical flow
- Global F1_score: 0.786

Figure 36: Generated mask

Figure 37: Ground truth mask

• The team almost always worked together, from ideas brainstorming to implementation and testing

- More thorough parameters exploration
- Other data augmentations methods
- Model architecture modifications
 - Update module adaptation: to exploit temporal information

- Fernando Pérez-García, Rachel Sparks, and Sébastien Ourselin.
 Torchio: a python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.
 Computer Methods and Programs in Biomedicine, page 106236, 2021.
- Zachary Teed and Jia Deng.

Raft: Recurrent all-pairs field transforms for optical flow.

Thank you for the attention

Figure 38: Baseline

Figure 39: HF

Figure 40: Best

Outpainting Localizer