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1 INTRODUCTION
We live in a world in which the amount of digital information that
surrounds us is so high that we need to use some recommendation
systems everyday in order to filter the ones that could be interest-
ing for us. We need to use these technologies so frequently that
we almost take for granted their presence in all the devices and
platforms that we use during our days.[6]

A Recommendation System is a tool that is able to filter and
prioritize the relevant information for users, based on their per-
sonalized basis. This process allows to reduce the information load
that the user will receive after having learnt, in an implicit and
explicit way, their preferences.[10] The functionalities provided by
a well-developed recommendation system could be helpful both for
the platform that host it, because it will increase in traffic, and for
the users, that will be more satisfied.[7]

Many businesses’ revenues are directly related to the quality of
their recommendation system. For example, search engines like
Google are interested in proposing web pages that could be found
meaningful by the users. Other services instead, like Amazon and
AirBnB, are interested in proposing products and apartments based
on the users’ preferences. Finally, other services, such as Netflix
and Spotify, propose a well-developed recommendation system in
order to have a competitive platform useful for growing a large
user base.

1.1 Netflix
Netflix, indeed, represent one of the most successful examples of
recommendation systems: its movies are proposed by considering
some attributes that they have (like information about the titles,
such as their genre, categories, actors, release year, etc) together
with the habits that a certain user has (the time of the day when
a user accesses the service, the average length of his/her stay in the
platform, and so on). The preferences of an user are obtained both
in a directed way, for example by understanding what the users
like using their ratings or requesting some feedback, either in a
non-directed way, analyzing the users’ habits.[9]

The data that Netflix’s recommendation system uses are very
different, and as a result, they must be treated and processed differ-
ently: there are data that can change or stay the same over time, that
can be discrete or continuous, and that can be known or unknown.
Typically, the unknown and unfixed information pertains to the
users.

1.2 Challenges behind a recommendation
system

As illustrated, the development of a recommendation system could
be very challenging for many reasons independently by its scope
and scenario. The key problems are related to the lack of data
collection and to the fact that both the information fields that could

be considered relevant, as well as their values, may change over
time.[8] Furthermore, how to use those data at disposition is quite
complex and not intuitive, so only a few companies can provide
a very high level of user satisfaction with their recommendation
systems.

To those difficulties another one is added, which is related to
dealing with those information in an efficient and feasible manner,
not obtainable with naïve approaches.

It should be noted that there are no issues with cold starts in the
scenario under consideration: cases where new items or users are
added are not within the scope of the problem addressed by this
work.

1.3 Approaches to tackle this task
Throughout the years, research has focused on the complications
associated with the recommendation task in order to find the best
approaches and techniques for dealing with it. The main ones can
be divided into three major categories:

• Content-based systems
• Collaborative filtering systems
• Hybrid recommendations approaches

Each category is characterized by their own main advantages such
that, depending on the specific task that must be performed, we
can prefer a specific approach with respect to another one.

Content-based systems focus on properties of items. Similar-
ity of items is determined by measuring the similarity in their
properties.[4] In general, collaborative filtering systems focus in-
stead on the relationship between users and items. For instance,
the similarity of two items could be determined by the similarity
of the ratings of those items by the users who have rated both of
them.[4]

Usually some preliminary steps are required to avoid either
slow run-time computation and results that are far from the actual
preferences of the users. Similarity, for instance, could be used to
cluster users and/or items into small groups with high similarity.

Most recommendation systems now employ a hybrid approach
that combines collaborative filtering, content-based filtering, and
other techniques. Hybrid approaches can be implemented in several
ways, including separately making content-based and collaborative-
filtering predictions and then combining them; adding content-
based capabilities to a collaborative filtering approach (and vice
versa); and unifying the approaches into a single model. [12]

1.4 Our query recommendation system
The context on which we decided to focus on is similar to the Netflix
one, even if we have decided to put more emphasis in recommend-
ing some queries related to a set of movies instead of recommending
the movies themselves. In other words, we wanted to compute how
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much a set of queries identifying one or more movies character-
ized by discrete and continuous attributes could satisfy a user’s
preferences. The most effective approach we were able to obtain
was composed of two different Collaborative Filtering components
weighted according to query result cardinality.

Our tool’s ultimate goal is to be able to complete the tasks out-
lined in section 2 regardless of the domain being analyzed. In other
words, if "MOVIES" is the current domain, "SUPERMARKET PROD-
UCTS" could be an alternative one. To be able to perform the later
formalized tasks correctly regardless of the domain chosen, the tool
or set of algorithms must be elastic and make as few assumptions
as possible.

2 PROBLEM STATEMENT
We can define the previously mentioned problem more formally,
specifically by dividing our task into two major sub-tasks or
sub-problems.

For the first sub-task, the inputs given are:
• A relational table 𝑅𝑇 : where each item 𝑖 is represented

by a row containing some values that characterize specific
attributes of that item. Therefore, each row represent a
tuple of the shape: ⟨𝑎𝑡𝑡𝑟1, 𝑎𝑡𝑡𝑟2, 𝑎𝑡𝑡𝑟3, ..., 𝑎𝑡𝑡𝑟𝑁 ⟩. All the
fields of all the tuples have a value and there are no NULL
values. Formally:

RT =
(
𝑣1,𝑖 , 𝑣2,𝑖 , . . . , 𝑣𝑁,𝑖

)
| 𝑣 𝑗,𝑖 ∈ V

• A user set 𝑈𝑆 : where each user 𝑢 is represented by one
row that contains only the id of the user 𝑢. Formally:

US = 𝑢𝑖 | 𝑢𝑖 ∈ UID

• A query set 𝑄𝑆 : where each query 𝑞 previously posed is
represented by a row. Each row starts with an identifier of
the query and continues with its definition composed by
conjunction of "attribute=value" conditions. For the same
query, there couldn’t be more than a condition regarding
the same attribute. Formally:

QS =

(
𝑞𝑖 ,

(
𝑎 𝑗 , 𝑣 𝑗

) 𝑛
𝑗=1

)
| 𝑞𝑖 ∈ QID,

(
𝑎 𝑗 , 𝑣 𝑗

)
∈ AV, 𝑛 ≥ 1

• A utility matrix 𝑈 : a matrix in which each row corre-
sponds to a user 𝑢, each column to a query 𝑞 and for some
user-query pairs (𝑢, 𝑞), a satisfaction rating between 0 and
100 is provided. So,𝑈𝑢,𝑞 represents the satisfaction rating
for user 𝑢 and query 𝑞 and the condition 0 ≤ 𝑈𝑢,𝑞 ≤ 100
holds. Formally:

𝑁 = |US|
𝑀 = |QS|
R = {𝑟 ∈ R | 0 ≤ 𝑟 ≤ 100}
U =

{
U𝑢,𝑞 ∈ R ∪ {𝑁𝑈𝐿𝐿} | 0 ≤ 𝑢 < 𝑁, 0 ≤ 𝑞 < 𝑀

}
The goal of the first task is to fill the utility matrix’s user-query

pairs that still don’t have a value in a coherent way with the interest
of each user. In this manner we could, given that completed matrix
𝐶 and a user 𝑢, return the top-k queries that might be of interest to
a specific user 𝑢. More formally, the outputs of the first task are:

• A completed utility matrix 𝐶 , where 𝐶𝑢,𝑞 represents the
satisfaction rating for user 𝑢 and query 𝑞, including the
previously missing values. Formally:

C =
{
C𝑢,𝑞 ∈ R | 0 ≤ 𝑢 < 𝑁, 0 ≤ 𝑞 < 𝑀

}
with 𝑅, 𝑁 and𝑀 defined like in the case of𝑈 .

• A list of top-𝑘 queries 𝐿 that might be of interest to a
specific user 𝑢. Formally:

L = (𝑢, 𝑞𝑖 , 𝑟𝑖 ) | 𝑢 ∈ US, 𝑞𝑖 ∈ QS, 𝑟𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑘,

∀𝑥,𝑦 ∈ {1, 2, 3, ..., 𝑘}, 𝑥 < 𝑦, 100 ≥ 𝑟𝑥 ≥ 𝑟𝑦 ≥ BR ≥ 0
where 𝑟𝑖 represents the satisfaction rating for the fixed user
𝑢 and query 𝑞𝑖 , 𝑅 defined as before. We define the set of
good ratings 𝐺𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑘 } and bad ratings 𝐵𝑅 such
that GR ∩ BR = ∅ holds.

After completing the first sub-task, we want to broaden the
problem in a more general sense: given the elements produced by
the previous task as input, we want to find a way to compute a
utility matrix for a query in general for all the users.

More formally, the output of the second sub-task is:
• An array 𝑄𝑈 of satisfaction ratings which represents the

utility of a query in general, (i.e. an unseen query) for all
the users in the user set𝑈𝑆 . Formally:

QU = (𝑞,𝑢𝑖 , 𝑟𝑖 ) | 𝑞 ∈ NQS, 𝑢𝑖 ∈ US, 𝑟𝑖 ∈ R, 0 ≤ 𝑖 < 𝑁

where 𝑁𝑄𝑆 is a set of unseen queries (i.e.: NQS ∩ QS = ∅),
𝑟𝑖 represents the satisfaction rating for user𝑢𝑖 and the fixed
query 𝑞, 𝑅 and 𝑁 are defined as before.

2.1 Our scenario
The inputs and the outputs managed by the tool are organized in
csv files.

The context that we exploited in order to create a tool for ac-
complishing the previously formalized task is related to movies.

In the context of this specific chosen domain, the tuples compos-
ing the relation table𝑅𝑇 are of the shape: ⟨𝑛𝑎𝑚𝑒,𝑔𝑒𝑛𝑟𝑒, 𝑟𝑢𝑛𝑡𝑖𝑚𝑒,𝑦𝑒𝑎𝑟,
𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑠𝑐𝑜𝑟𝑒⟩. Note that rating could represent a generic rating
given by a review aggregator like Rotten Tomatoes or IMDb.

As a result, the relational table contains some discrete fields (such
as genre and nationality) as well as some continuous ones (such
as length, publication year, and rating) that are also used in the
defined queries.We also assumed that users could have an unspoken
preference for the genre, nationality, length, and publication year
when generating the partial utility matrix, while there are fields
that have no significance (the title) and others that influence the
preferences of all users in the same way (the rating).

3 RELATEDWORK
3.1 Utility Matrix and Complete Utility Matrix
The concept of Utility Matrix is fundamental in order to under-
stand the problem statement and also the solution proposed. An
Utility Matrix is a matrix composed of 𝑢 rows, with 𝑢 the number
of users considered, and 𝑖 columns, with 𝑖 the number of items
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belonging to the Relational Table taken into account. In the in-
terception between a certain row 𝑛 and a certain column𝑚 there
could be a value, to represent the preference score given by the
user 𝑛 for the item𝑚, or not, in the case the user 𝑛 still have not
expressed explicitly a rating regarding the item 𝑚.[4] The main
goal of a recommendation system regards filling the missing values
of this Utility Matrix in order to obtain a complete one, in which the
blank ratings are deduced in a coherent way by the ones explicitly
expressed in the partial one.

3.2 Collaborative filtering systems
3.2.1 Item-Item Collaborative filtering systems. The collaborative
filtering systems, and in particular the item-item collaborative
filtering ones, represent the first approach tried in developing the
proposed solution and that ended up being an important part of it.
Indeed, it was demonstrated that the item-item collaborative filter-
ing approaches represent one of the most valid methods because
they work referring to the items’ attributes that are much simpler
in comparison to the ones that regards the users, that instead can be
characterized by multiple tastes.[4] The main idea of this approach,
that will be better developed during the Chapter 4, is related in
finding, for each item, a certain set of a chosen cardinality composed
by its most similar ones. In this way, it’s possible to assume that
an unrated cell belonging to the utility matrix will have a rating
obtained by combining the known ratings of other similar items in
a weighted way [4]. Also the theory regarding the advantages and
disadvantages of a Collaborative Filtering System suggested why it
would work well in a context like ours. Indeed:

• The main advantages regards its ability to be used inde-
pendently by the nature and the attributes’ shape. This
aspect is critical in developing a solution that will work
well regardless of the dataset proposed.

• The common disadvantages of a collaborative filtering sys-
tem, for example the Cold Start (the inability of identifying
the taste of some users due to the lack of their ratings) and
the one related, similarly, to the fact that a newly intro-
duced item will not have any valuation, will not regard our
scenario. Those problems indeed often characterize online
contexts, in which new data are presented over time to the
system.

3.2.2 Why a bigger dataset can be helpful in solving our task. The
fact that the ratings computation consists in finding the items that
are similar to one chosen has a consequence that more will be
the data in a dataset, better will be the results found. This works
because:

• more are the items considered, more probable will be to
have, in the dataset, a set of items very similar to any one
proposed.

• more are the users considered, more will be the number of
ratings given by them to the items. This situation is also
advantageous in order to find groups of similar items.

• also a less sparse utility matrix will be helpful in order
to fill it in a better way. Indeed, also in this case, a greater
number of known ratings will be helpful in order to under-
stand better the items features, useful to find precisely the
more similar items to one chosen.

3.2.3 Approaches to reduce the time complexity. Even if having
more data will be helpful in computing a more coherent complete
utility matrix, this will also have the drawback of analyzing and
filling a greater matrix at the expenses of the performance in time.
For this reason, some approaches were developed in order to fill an
utility matrix with a lower complexity, having as consequence a
slightly worse ratings predictions. The main approach used regards
the clustering, with which is reduced the number of users, of items
or of both by considering together the users or the items that are
similar between them. This clustering procedure is performed by
establishing a distance measure between the users and the items
based on the ratings that regards them and, if their distance is
under a threshold, it is possible to cluster them and consider them as
elements having the same behavior. After having filled the clustered
utility matrix, it is possible to expand it by assigning, to each user or
item belonging to the same cluster, the rating regarding the cluster
itself.

3.3 Hybrid recommendation approaches
A recommendation system that combines the predictions made by
different ones is known as a hybrid recommendation system.
Those approaches are quite popular and used due to the fact that
usually it is hard to find a single recommender model that will fit
well a given dataset. The solution proposed (Chapter 4) use one of
the most popular methods for developing a hybrid recommendation
system, which is combining, in a weighted way, the prediction
performed by two or more different recommendation systems.

3.4 Distances
When creating a recommendation system, different distance mea-
sures of similarity can be used in a variety of situations.

3.4.1 Cosine similarity.

𝑆𝑐 (𝐴, 𝐵) := 𝑐𝑜𝑠 (\ ) = 𝐴 · 𝐵
∥𝐴∥ ∥𝐵∥ =

∑𝑛
𝑖=1𝐴𝑖𝐵𝑖√︃∑𝑛

𝑖=1𝐴
2
𝑖

√︃∑𝑛
𝑖=1 𝐵

2
𝑖

Cosine similarity is a measure of similarity between two se-
quences of numbers (vectors).

3.4.2 Centered cosine similarity. Referring to cosine similarity, if
the attribute vectors are normalized by subtracting the vectormeans
(e.g., 𝐴 −𝐴 ), the measure is called the Centered cosine similarity
and is equivalent to the Pearson correlation coefficient.

3.4.3 Jaccard similarity. The Jaccard index, also known as the Jac-
card similarity coefficient, is a statistic used for gauging the simi-
larity and diversity of sample sets. [2]

𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | =

|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 |

3.5 Programming language and libraries
The entire solution was developed in Python. Mainly, the Pandas,
NumPy and Scikit-learn.metrics libraries were leveraged.
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4 SOLUTION
The path leading to the final solution was guided by analysis of
related topics, reasoning deemed logical, and empirical results.

The proposed solution is a hybrid recommendation system
leveraging a linear combination of Expanded-Item-Item Col-
laborative Filtering and Compact Item-Item Collaborative
Filtering based on query result cardinality.

Therefore, the solution consists of 3 main components:
• Compact (Standard) Item-Item Collaborative Filtering com-

ponent
• Expanded-Item-Item Collaborative Filtering component
• Hybridization component

The first 2 components are used to obtain 2 Complete Utility
Matrices, which are combined according to a precise logic (i.e.,
using the cardinality of the result set of each query).

In the current configuration, the following logic is enforced: if a
query’s cardinality is high, a greater weight is given to the rating
provided by the utility matrix of the compact method; instead, if the
cardinality is low, a greater weight is given to the rating provided
by the utility matrix of the expanded method. The basic reasoning
behind this was the fact that if a query is composed only by few
items as result, it is possible to get the queries’ ratings from the
ones of their results. When, instead, the rating computation regards
a query having an higher number of results, the prediction couldn’t
be computed correctly by starting from the one of its items. This
because, summing up together a great number of predictions, each
one characterized by a small inaccuracy, will have end up in a result
in which all those errors are accumulated.

In the Compact Item-Item Collaborative Filtering component,
the queries were treated directly as items, whereas in the Ex-
panded Item-Item Collaborative Filtering component, items are
relational table tuples.

Since the solution devised an offline setting an important assump-
tion were made: heavy pre-computation task are tolerated. This
assumption was fundamental in order to keep our solution valid be-
cause of the fact that the intermediate user-item utility matrix, that
will be computed and filled in the expanded collaborative filtering
approach, has a numbers of cells much higher in comparison to the
utility matrix representing the main input of the problem statement.
The intermediate results computed, i.e., compact complete utility
matrix and expanded complete utility matrix are saved into ".csv"
format which are then exploited to execute the two tasks.

4.1 Compact Item-Item Collaborative Filtering
component

The Compact Item-Item Collaborative Filtering component was the
first one to be developed since it would have been used as starting
point for the Expanded version. Moreover, this component is used,
as is, as part of the final solution. The core part of this component is
an implementation of a standard Collaborative Filtering algorithm.
In this Compact version, items are the queries previously posed.

The task to be performed by this component is the generation of
a Complete Utility Matrix starting from the Utility Matrix as input
and filling it with newly calculated ratings where ratings were
previously unknown. As a validation proof, the implementation
was tested during the development on a small dummy dataset.

To break down the implementation of the previously described
algorithm, four major phases can be identified:

• Pre-processing
• Computing similarities between items
• Calculating the ratings
• Generating the Complete Utility Matrix

4.1.1 Pre-processing. The input that this component leverages
is the only Utility Matrix which is stored in a .csv file. Each row
𝑢 represents a user, each column 𝑞 represents a query and each
cell (𝑢,𝑞) represents a rating 𝑟 given by the user 𝑢 for the query
𝑞. If the user 𝑢 has not expressed his rating for the query 𝑞, the
corresponding cell is empty.

Once parsed from file, the Utility Matrix is transposed and the
missing values are replaced with 𝑁𝑎𝑁 s. We should point out the
fact that the transposition was made just to be able to verify that
the actual implementation was correct, the operations that will be
later described are symmetrically equivalent with respect to rows
and columns.

A Centered Matrix is generated from the Transposed Utility Ma-
trix as follows: if the cell contains a valid rating (not 𝑁𝑎𝑁 ), the
Centered Matrix cell value is the rating minus row mean (which
represent the mean rating of the relative query).

Instead, the cells of the Centered Matrix containing NaN values
are filled with the mean of the query ratings (the mean of the
row in this case). Also in this case, it was preferred to follow the
philosophy of using item characteristics (more synthesizable) versus
user characteristics (more complex).

4.1.2 Computing similarities between items. The Centered Matrix
described above is needed in order to compute the Cosine Similarity
between rows, which is actually a Centered Cosine Similarity,
also known as Pearson Correlation.

The similarities between rows are computed once for the entire
Centered Matrix, stored in a matrix of similarities:
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑖𝑒𝑠_𝑚𝑎𝑡𝑟𝑖𝑥 = 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑚𝑎𝑡𝑟𝑖𝑥,
𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑_𝑚𝑎𝑡𝑟𝑖𝑥)

This matrix is then needed for the following step of the algorithm:
calculating the rating of a cell (𝑞𝑢𝑒𝑟𝑦,𝑢𝑠𝑒𝑟 ) of the Complete Utility
Matrix.

4.1.3 Calculating the ratings. Exploiting the matrix of similarities,
the similarities of the specific query against the others are selected.

Those similarities are sorted in descending order and the top N
similar queries are selected (i.e. the ones with the highest values),
excluding the query itself. The chosen TOP_N value is 2. This step
acts as a "neighbor selector".

The formula used to calculate a rating is:

𝑟𝑥𝑖 =

∑
𝑗∈𝑁 (𝑖 ) 𝑠𝑖 𝑗 · 𝑟𝑥 𝑗∑

𝑗∈𝑁 (𝑖 ) 𝑠𝑖 𝑗

where:

• 𝑟𝑥𝑖 is the rating of user 𝑥 on query 𝑖
• 𝑠𝑖 𝑗 is the similarity of query 𝑖 and 𝑗
• 𝑟𝑥 𝑗 is the rating of user 𝑥 on query 𝑗
• 𝑁 (𝑖) is the set of queries similar to 𝑖
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To be as general as possible while making few assumptions, some
edge case handling is needed, since the density and composition
of the Utility Matrix 𝑈 , given as input, is not fixed.

In particular, if a rating 𝑟𝑥 𝑗 , corresponding to a query within the
TOP_N highest similarities, is missing for the user 𝑥 in the Utility
Matrix 𝑈 , the value considered in the computation is the mean of
the correspondent query.

Another edge case that should be handled is the division by zero,
that is, when the sum of the top similarities at the denominator
of the above formula is zero. Even after the pre-processing, this
could happen if the matrix is very small or sparse. The final rating
assigned in this case is the mean of the query.

The following step is to round the obtained rating to an integer
and ensure that it falls within the range [0 − 100].

4.1.4 Generating the Complete Utility Matrix. The final phase con-
sists of cycling the Utility Matrix 𝑈 and calculating the cell
(𝑞𝑢𝑒𝑟𝑦,𝑢𝑠𝑒𝑟 ) rating for each 𝑁𝑎𝑁 value using the elements de-
scribed above. Finally, the matrix can be transposed, to have users
as rows and queries as columns and saved into a .csv file.

4.2 Expanded-Item-Item Collaborative Filtering
component

The Expanded Item-Item Collaborative Filtering component
was the second approach combined, in a weighted way, in the
final solution proposed. The main idea of this approach consists in
expanding the User-Query UtilityMatrix given as input, in order to
obtain a User-RelationalItem Utility Matrix, sparse as well. Once that
this last UtilityMatrix will be filled with the Item-ItemCollaborative
Filtering approach implemented as in the subchapter 4.1, it will
be possible to reduce it back to a Complete User-Query Utility
Matrix, the one requested as output by the problem statement. The
implementation of this algorithm can be broken down in three
major phases:

• Expansion users-queries to users-items utility matrix
• Item-Item collaborative filtering execution on the users-

items utility matrix
• Compression users-items to users-queries utility matrix

4.2.1 Expansion users-queries to users-items utility matrix. First of
all, another Utility matrix is computed in order to provide better
predictions to the ratings that a user will give to the queries that
output, as results, a relatively small number of items in comparison
to the entire cardinality of the relational table𝑅𝑇 taken into account.
The first step to be done, in order to produce this second Utility
Matrix, consists in trying to predict the ratings that every user
considered will give to each item belonging to the relational table,
based on the known preferences expressed by them in the Utility
Matrix 𝑈 provided as input of the problem.

In order to do that, at first a query pre-computation is performed
in order to increase the performance in time and the modularity
of the approach. This pre-computation consists in building a new
matrix called preprocessed_queries in which each row 𝑞 represents
a query, each column 𝑖 represents an item of the relational table
and, at each cell (𝑞,𝑖), is added a placeholder in order to take track
of the case in which an item 𝑖 is part of the result of the query 𝑞.

preprocessed_queries, so, will work as a list of BitSet of the items
present in the correspondent query result set.

The preprocessed_queries matrix is computed in the way illus-
trated in Algorithm 1.

Algorithm 1: Preprocessed_queries computation
Data: items,queries
Result: preprocessed_queries
preprocessed_queries[][]
for item in items do

for query in queries do
is_item_in_query_results=True
for attribute in query do

if query[attribute] != item[attribute] then
is_item_in_query_results=False
break

end
end
if is_item_in_query_results==True then

preprocessed_queries[query][item]=True
end

end
end

Once that the preprocessed_queries matrix is computed, a non-
complete users-item_utility_matrix is predicted; in which each row
𝑢 represents a user, each column 𝑖 represents an item and each cell
(𝑢,𝑖) represents a rating prediction 𝑟 of the user 𝑢 for the item 𝑖 if
the user 𝑢 has expressed his rating in the utility matrix 𝑈 for at
least a query having the item 𝑖 as result, or is empty otherwise.

In the case a cell (𝑢,𝑖) contains a prediction and not an empty
value, this rating 𝑟 is computed in aweighted way in order to keep
it closer to the known ratings that the user 𝑢 gave to the queries
that returned a smaller number of results. This because, when the
cardinality of the results of a query is small, the preference of a
user for a single relational item will influence more the final rating
of the query itself and so, as consequence, those query ratings
will be very similar to the ones assigned to the singular items that
are composing their results. Each rating 𝑟 is computed with the
following expression:

𝑟 =

∑
𝑞∈𝑖𝑄𝑆 U𝑢,𝑞 ·𝑇𝑊 ÷ |𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑞] [:] |∑

𝑞∈𝑖𝑄𝑆 𝑇𝑊 ÷ |𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑞] [:] |

where:
• 𝑖𝑄𝑆 is a subset of the query set 𝑄𝑆 , containing the queries

rated by the user 𝑢 having the considered item 𝑖 in their
results

• 𝑈𝑢,𝑞 is the rating given by the user 𝑢 to the query 𝑞
• |𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑞] [:] | return the number of results

of the query 𝑞
• 𝑇𝑊 is the sum between all the |𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑞] [:

] | faced during the computation of the preference score of
a user 𝑢 for a certain item 𝑖 . It can be computed with the
formula:
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∑︁
𝑞∈𝑖𝑄𝑆

|𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑_𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [𝑞] [:] |

In pseudo-code, the users-item_utility_matrix is computed as
illustrated in Algorithm 2.

Algorithm 2: users-item_utility_matrix computation
Data: users,items,queries,utility_matrix,preprocessed_queries
Result: users-item_utility_matrix
n_results[]
users-item_utility_matrix[][]
for query in queries do

n_results[query] = preprocessed_queries[query].count()
end
for user in users do

for item in items do
for query in queries do

if utility_matrix[user][query] &&
preprocessed_queries[query][item] then

total_weight+=n_results[query]
end

end
for query in queries do

if utility_matrix[user][query] &&
preprocessed_queries[query][item] then

partial_score+=utility_matrix[user][query] *
total_weight / n_results[query]
denominator+=total_weight /
n_results[query]

end
end
if denominator!=0 then

users-item_utility_matrix[user][item]=
partial_score / denominator

end
end

end

As it is possible to notice, the users-item_utility_matrix returned
is sparse due to the fact that:

• A relational item could not appear as result in any query.
• A user could have not rated any query having, as result, a

certain item.
In both the cases in which the denominator variable used in the
Algorithm 2 will be 0, it will have, as consequence, the introduction
of an empty cell due to the fact the last if condition won’t be
satisfied. In Figure 1 it is shown an example of the result of the
expansion described.

4.2.2 Item-Item collaborative filtering execution on the users- items
utility matrix. In this step, the main objective regards filling the
users-item_utility_matrix previously computed in order to obtain
a complete matrix in which each row 𝑢 represents a user, each
column 𝑖 represents an item and each cell (𝑢,𝑖) represents a rating
prediction of the user 𝑢 for the relational item 𝑖 .

Figure 1: Expansion Users-Queries Utility Matrix into Partial
Users-Items Utility Matrix

To fill the users-item_utility_matrix it was used the same Item-
Item Collaborative Filtering approach described in the subchap-
ter 4.1, but, instead of using the Utility Matrix 𝑈 as input, were
used the users-item_utility_matrix itself. In Figure 2 it is shown an
example of the result obtained by doing so.

Figure 2: Item-Item Collaborative Filtering applied on the
Expanded Utility Matrix

4.2.3 Compression users-items to users-queries utility matrix. Once
the users-item_utility_matrix was filled, as previously described,
it was used to compute the complete users-queries_utility_matrix,
the requested output of the problem statement. This compression
phase was performed by taking each user-query combination, by
identifying the items that will be part of the result set of the query
previously considered (referring to the preprocessed_queries matrix
computed in Algorithm 1) and by computing the mean of the rat-
ings of those items for the specific user in consideration. Those rat-
ings are actually read from the complete users-item_utility_matrix
computed in the subsection 4.2.2. In order to improve both the
performance in time of this compression, both its correctness, if a
user-query combination was already known from the Utility Matrix
𝑈 given as input of the problem, those satisfaction values were
also reported in the complete users-queries_utility_matrix with-
out compute any other operation. In pseudo-code, the complete
users-queries_utility_matrix is computed as described in Algorithm
3.

The users-queries_utility_matrix is actually complete because
every user has expressed, in the users-item_utility_matrix, a rating
toward any item. This has as consequence that every item that
compose the result of any query will be rated, and so computing
the mean of those items ends up in being a trivial operation. This
users-queries_utility_matrix, for how it was intended during the
expansion part described in the subchapter 4.2.1, is more reliable
in predicting the preferences regarding the queries that involves a
relatively small amount of items in comparison to the cardinality
of the entire Relational Table given as input. In Figure 3 it is shown
an example of the result of the compression described.
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Algorithm 3: Complete users-queries_utility_matrix com-
putation
Data: users,items,queries,utility_matrix,users-

item_utility_matrix,preprocessed_queries
Result: users-queries_utility_matrix
users-queries_utility_matrix[][]
for user in users do

for query in queries do
item_counter=0
partial_rating=0
if utility_matrix[user][query]=="" then

for item in items do
if preprocessed_queries[query][item]==True
then

partial_rating+=
users-item_utility_matrix[user][item]
item_counter+=1

end
users-queries_utility_matrix[user][query]=
partial_rating /item_counter

else
users-queries_utility_matrix[user][query]=
utility_matrix[user][query]

end
end

end

Figure 3: Compression Complete Users-Items Utility Matrix
into Complete Users-Queries Utility Matrix

4.3 Hybridization
The final solution exploits the two previously computed Complete
Utility Matrices by both the Compact Item-Item Collaborative
Filtering and Expanded Item-Item Collaborative Filtering com-
ponents with a linear combination of their ratings driven by query
result cardinality. More precisely, based on the number of tuples
belonging to the result set of a specific query, a different weight
is assigned to the ratings of the same cell (user, query) of the two
Complete Utility Matrices to obtain a new rating. Therefore, this rat-
ing takes into account both the rating calculated with Compact and
Expanded Item-Item CF components, but with a different weight
based on how many results are returned by the corresponding
query.

In order to count the values of the result set of each query, an in-
termediate utility file, which is already used for the Expanded Item-
Item Collaborative Filtering component and described in Section
4.2.1, is exploited. Leveraging the fact that each row, representing a
query, acts like a BitSet of the items present in the correspondent

query result set (its value is True if the item is present), the cardinal-
ity is easily computed. This cardinality, compared with thresholds,
is used as discriminator for the choice of theweights, as illustrated
in Algorithm 4.

There are several ways to assign weights and thresholds. The
most accurate method of assigning them may change due to in-
herent hidden concepts of the particular dataset, the shape and
characteristics of the dataset itself (e.g. mean, minimum, maximum
of the result set cardinality). Each of these options needs to be care-
fully considered on a case-by-case basis in order to select the best
way to proceed for the context being examined and finally to be
able to fine-tune the parameters.

One path that could be chosen, that is the current one used for
the evaluation experiments, consists in giving more weight to the
rating provided by the Utility Matrix of the Compact method if the
query result set’s cardinality is high; instead, if that cardinality
is low, a greater weight is given to the rating provided by the Utility
Matrix of the expanded method. Thresholds must be chosen having
a clue of the mean, minimum and maximum value of the queries’
result sets of the dataset analyzed, in order to achieve a coherent
splitting of the 3 possible linear combination. For instance, if the
higher threshold is set to a value higher than the widest query
result set cardinality, then the first linear combination would be
never used in the computation. For the current dataset the mean
value of the result set cardinality is 221, the minimum value is 0
and the maximum value is 4696. Therefore the 2 threshold chosen,
that are consistent with the characteristics described above, are
200 (lower bound) and 1000 (upper bound). The three weights were
chosen in such a way that the combinations did not lean too heavily
toward a single approach but were symmetrically balanced with
one another. Therefore the weights chosen and currently used are:
0.75, 0.50, 0.25 and they are used in a symmetric way as show in
Algorithm 4.

The hybrid_utility_matrix that can be computed with the above
mentioned algorithm, is the Complete Utility Matrix requested as
output in the problem statement.

4.4 Leverage the final solution to solve PART A
The first goal met by the proposed solution is to generate a Complete
Utility Matrix. Directly related to this first objective, one can use
the tool to obtain the Top-K queries that may be of interest to the
user 𝑢. The parameters 𝑘 and 𝑢 are therefore the input parameters
of this component of the solution, referred to as PART_A.

In order to perform the above described task, the user row is
scanned in the Complete Utility Matrix proposed and the Top-K
queries are given as output. The viewer can choose whether to
receive only new ratings or ratings that were also previously present
in the initial (sparse) Utility Matrix 𝑈 .

4.5 Leverage the final solution to solve PART B
The PART_B of the project asks to develop a more general solution
that is able, given some unseen queries, to compute a prefer-
ence score about them for each user belonging to the User Set
𝑈𝑆 in input. Another way to interpret the task is to fill a new
Utility Matrix, so such was requested in PART_A, composed by
the matrix 𝑈 to which are appended some queries that are not
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Algorithm 4: Linear combination of Expanded Item-Item
Collaborative Filtering and Compact Item-Item Collabora-
tive Filtering
Data: preprocessed_queries, THRESHOLD_1,

THRESHOLD_2, WEIGHT_1, WEIGHT_2,
WEIGHT_3

Result: hybrid_utility_matrix
for query in queries do

results_in_query[query] =
preprocessed_queries[query].value_counts())

end
for query in queries do

if results_in_query[query] >= THRESHOLD_2 then
compact_CF_weight = WEIGHT_1
expanded_CF_weight = 1 - WEIGHT_1

else if results_in_query[query] < THRESHOLD_2
&& results_in_query[query] > THRESHOLD_1 then

compact_CF_weight = WEIGHT_2
expanded_CF_weight = 1 - WEIGHT_2

else
compact_CF_weight = WEIGHT_3
expanded_CF_weight = 1 - WEIGHT_3

end
for user in users do

hybrid_utility_matrix[user][query] =
compact_CF_weight *
compact_CF_utility_matrix[user][query] +
expanded_CF_weight *
expanded_CF_utility_matrix[user][query]

end
end

rated by any users, and so that will have their corresponding col-
umn composed only by NULL values. The solution proposed, that
will be described in details in the following subchapters, use the
results achieved by the PART_A in order to compute a new users-
RelationalItem_utility_matrix, whose ratings are combined in order
to give a prediction regarding new unseen queries.

4.5.1 Expansion user-item. The first operation done in order to
achieve the PART_B goal, as previously mentioned, is the compu-
tation of a new users-RelationalItem_utility_matrix, starting from
the output computed by the procedure developed in the PART_A.
This expansion follows the same underlying idea described in the
subchapter 4.2, even if some differences occurs due to the fact that:

• The matrix used as starting point for the expansion is com-
plete and so all the users will have a preference score, in
the computed users-RelationalItem_utility_matrix, about
the same items. The score regarding the relational tuples,
indeed, is retrieved by shifting the rating of a query to their
results and there are not users, in the matrix obtained in
PART_A, that have rated some queries that others won’t.

• In the expanded users-RelationalItem_utility_matrix there
could exists, by the way, some items that still not have a
rating: it is indeed possible that some queries present in the
Utility Matrix 𝑈 , and so also in the Complete Utility Matrix

obtained from PART_A, won’t have returned some items
belonging to the relational table taken into account. It is
also not possible to use any collaborative filtering approach
because all the users will have the cells belonging to those
items empty. In order to fill those users-items combinations
in a coherent way, it is assigned, in those cases, a score
equal to the mean of the other scores expressed by the user
considered for the rated relational items.

The algorithm used in order to achieve this aim is very similar
to Algorithm 2 and differs from it only for managing the previ-
ous observations, by introducing a new behavior in the case the
variable denominator will be equal to 0. The pseudocode following
those steps is illustrated in Algorithm 5, where the parameter util-
ity_matrix requested as input represent the Complete Utility Matrix
computed in 4.3.

4.5.2 Score computation. Once that the users-RelationalItem_utility
_matrix is computed, it is possible, given some new unseen queries,
to compute their preference scores by:

• checkingwhose items of the relational table represent a re-
sult for each given query. This procedure is accomplished by
executing Algorithm 1 to which the list queries, requested
as input, represent the new queries introduced.

• computing, for each user 𝑢, the mean of the scores that he
assigned to the relational tuples composing the results of
each new query 𝑞 given. This result will be the one to be
assigned to the cell (𝑢,𝑞) of the matrix in output.

The relative users-queries_utility_matrix, computed by executing
Algorithm 3 with users-RelationalItem_utility _matrix as input, will
be the output requested by PART_B. In order to replicate the entire
procedure we will refer to Algorithm 1 with the new queries as
input, for obtaining the BitSet new_preprocessed_queries, and to
Algorithm 6, for getting the Complete Utility Matrix requested by
PART_B.

The users-queries_utility_matrix, obtained by the execution of
the previous algorithms, satisfies the PART_B of the project. Indeed,
it has at each row 𝑢 each user presents in the user set𝑈𝑆 taken as
input, at each column 𝑞 each new queries proposed and, finally, in
each cell (𝑢,𝑞) a prediction about the preference score of the user 𝑢
for the new unseen query 𝑞 based on the users history.

4.6 Further improvements
Clustering and dimensionality reduction techniques could im-
prove temporal performance in the Utility Matrix’s pre-computing
phase of the current solution. However, as stated in the introduction
section of Chapter 4, the proposed solution was assumed to be in
an offline context. As a result, on-demand requests for PART_A
and PART_B tasks use pre-computed data that is saved on disk in
the form of ".csv" files.

4.7 Discarded approaches
4.7.1 User-User Collaborative Filtering. The User-User Collabora-
tive Filtering method yielded lower performancemetrics for both
the compact and expanded versions, as it can be seen is Section
5.5.2. This confirmed what was discovered in the analysis of related
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Algorithm 5: PART_B users-RelationalItem_utility_matrix
computation
Data: preprocessed_queries, users, items,

queries,utility_matrix
Result: users-RelationalItem_utility_matrix
n_results[]
users-RelationalItem_utility_matrix[][]
for query in queries do

n_results[query] = preprocessed_queries[query].count()
end
for user in users do

for item in items do
for query in queries do

if utility_matrix[user][query] then
current_weight=n_results[query]
total_weight+=current_weight

end
end
for query in queries do

if utility_matrix[user][query] then
partial_score+=utility_matrix[user][query] *
total_weight / n_results[query]
denominator+=total_weight /
n_results[query]

end
end
if denominator!=0 then

users-
RelationalItem_utility_matrix[user][item]=partial_score
/ denominator

else
users-
RelationalItem_utility_matrix[user][item]=
"PLACEHOLDER"

end
end
rating_mean=0
item_counter=0
for item in items do

if users-RelationalItem_utility_matrix[user][item]!=
"PLACEHOLDER" then

rating_mean+= users-
RelationalItem_utility_matrix[user][item]
item_counter+=1

end
end
rating_mean=rating_mean/item_counter
for item in items do

if users-RelationalItem_utility_matrix[user][item]==
"PLACEHOLDER" then

users-RelationalItem_utility_matrix[user]
[item]=rating_mean

end
end

end

Algorithm 6: PART_B users-queries_utility_matrix com-
putation
Data: new_preprocessed_queries, users, items,

queries,utility_matrix
Result: users-queries_utility_matrix
users-queries_utility_matrix[][]
for user in users do

for query in queries do
partial_query_score=0
results_counter=0
for item in items do

if new_preprocessed_queries[query][item]==True
then

partial_query_score+=users-
RelationalItem_utility_matrix[user][item]
results_counter+=1

end
end
if results_counter!=0 then

users-queries_utility_matrix[user][queries]=
partial_query_score / results_counter

else
users-queries_utility_matrix[user][queries]=0

end
end

end

works in Chapter 3: Item-Item Collaborative Filtering typically
outperforms User-User Collaborative Filtering.

4.7.2 Content-based method. A content-based method was also
implemented. The initial strategy was to elect it as a method to
be included in the final hybrid solution, as a weight portion, but
failed some preliminary performance tests.

Although a fairly large number of options and alternatives were
tested, good performance metrics were not obtained.

Best performances were achieved with the use of "dynamic pro-
files" that change based on what user-query comparison is to be
done. Each user profile is composed of its TOP_Q values for each
possible attribute plus the values present in the query attributes if
not already present in the user profile.
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5 EXPERIMENTAL EVALUATION
5.1 Dataset composition
The dataset taken into account during the experimental evalua-
tion is composed both by real and synthetic data organized in
".csv" files. In particular the Relational Table 𝑅𝑇 is composed by
real data that, in the scenario considered, represents 7669 exist-
ing movies. The movies taken into account were retrieved from
kaggle.com, a popular collection of public datasets used for data
science works. The dataset was moreover cleaned and projected in
the tuple ⟨𝑛𝑎𝑚𝑒,𝑔𝑒𝑛𝑟𝑒, 𝑟𝑢𝑛𝑡𝑖𝑚𝑒,𝑦𝑒𝑎𝑟, 𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑠𝑐𝑜𝑟𝑒⟩
in order to make it compatible with the other synthetic data used.
The User Set𝑈𝑆 , the Query Set 𝑄𝑆 and the Utility Matrix𝑈 are
instead synthetic and were generated by the team. In particular:

• The User Set is composed by a list of 2500 users’ ids gen-
erated through the use of the 𝑢𝑢𝑖𝑑 python’s module. Each
user has an unspoken preference regarding each attribute
belonging to the items’ tuple in order to generate the utility
matrix in a coherent way.

• The Query Set is composed by 100 queries. Each query is
represented by at least a key-value constraints, where each
one of them corresponds to existing attribute and value
present in at least a tuple of the Relational Table 𝑅𝑇 .

• TheUtility Matrix is composed by a matrix having𝑢 rows,
with𝑢 corresponding to the number of users, and𝑞 columns,
with 𝑞 corresponding to the number of queries. One third
of the user-query combinations of the matrix is filled with a
rating computed by taking into account the unspoken user
preferences on the results produced by the execution of the
queries on the relational table.

The Complete Utility Matrix, composed by the Utility Matrix 𝑈
without any hidden value, was also stored in order to use it only
during the performance evaluation of the proposed solution and
of the ones produced by the baselines considered.

5.2 Dataset generation
The synthetic data of the dataset considered were generated in
order to accomplish the attributes and values of the real relational
table. Another choice taken, in order to work on a dataset having
as few assumptions as possible and so whose solution would
work in the same way also with other ones, was to do not establish
any correlation through different distances between the values
belonging to discrete fields. For instance, in the current scenario,
the Thriller genre could have been considered a closer concept to
the Horror genre than the Musical genre.

5.2.1 Fields recognition. In order to generate the data in this way,
first of all it was necessary to analyze the kind of attributes belong-
ing to the real relational table and to divide them in:

• Discrete Attribute (as the genre and the country)
• Continuous Attributes (as the runtime, the publication

year and the score)
• Not-relevant attributes (as the "name")

In order to do that, the distinction was computed by considering at
first the attributes where each of their value could be parsed in a
numeric format. Those fields were considered as continuous. The

non-continuous fields, in addition, were divided in not-relevant
attributes, in the case they were unique in at least the 75% of the
times, and discrete, otherwise. During the generation of the dataset
it is also given the possibility of specifying manually which con-
tinuous fields will influence the user ratings in the same way for
everyone, for example in the current relational table the field "score"
(like a IMDB score) will influence everyone in the same way by
increasing or decreasing the rating given to an item independently
by the users’ preferences.

5.2.2 User profiles. Once the fields were divided in this way, they
were leveraged in order to build the users’ profiles. Each user’s
profile is characterized by:

• a user_id, which represents the only known field about the
user used by the actual solution algorithm.

• an average_score_translation field, a random value be-
tween -10 and 10 that will indicate if a user is severe or
not in his rating.

• 10 fields for every discrete field of the relational table, in
order to indicate which are the values for those fields that a
user will appreciate the most (the first 4 ones) or the least
(the last 6 ones). The values not present in the user profile
will be simply rated as unpleasant, with a contribution of
60 out of 100 each.

• a field for every continuous attribute regarding the
items (except for the score one), in order to express the
users’ unspoken preferences toward a certain continuous
item field. Those preferences contains a value picked from
a Gaussian distribution having as mean the mean value
regarding a certain continuous attribute andwith a standard
deviation such that over the 98,5% of the values will be in
the range of values found in the relational table for each
attribute. It was chosen to use a Gaussian distribution in
order to generate those preferences by also managing the
existence of very high or very low values appearing in the
big minority of the items considered. If it was chosen to
pick some random equiprobable values for computing the
users’ preferences between the real range of values, a big
amount of those picks will be strongly similar to only few
(usually one) items of the relational table.

Those users profiles built were used both in the creation of the
Utility Matrix𝑈 belonging to the input of the problem, both during
the evaluation performed for the PART_B of the solution proposed.

5.2.3 Query definition. It was then built the definition of the attribute-
value constraints belonging to 100 queries that will compose the
columns of the utility matrix proposed. In order to reduce the
number of queries that won’t return any result if executed on the
Relational Table 𝑅𝑇 , after having picked a attribute-value constraint
referring to a considered field present in the relational table, the
other ones were added with 25% of probability each. The combina-
tion of those constraints will represent our query definition.

5.2.4 Query result computation. As a pre-computation used during
the creation of the Utility Matrix, each query was computed on
the entire relational table and its results were saved in a file called
*query_id*.csv. This operation was simply done by iterating over



Evaluating Dataset portions based on query logs

all the attribute-value pairs defined for each query and by writing
to file the items that were satisfying all of it.

5.2.5 Utility matrix computation. With all those computations per-
formed, it is actually possible to compute both the Real Utility
Matrix, a complete matrix containing the ratings of all the users
for all the queries, both the Utility Matrix 𝑈 , that represents an
input of our problem statement. In order to compute them, an
iteration through all the users and all the query results achieved
was performed and it was assigned, using the unspoken preferences
of the users, a rating for each query. The rating of a query by a user
corresponded to themean of all the ratings that the user gave to
its results. The rating given to a single item by a user is obtained
by the sum of:

• the ratings given to each discrete attribute of the item.
Those ratings depend by the position of which the effective
discrete value of an item appears in the user profile.

• the ratings given to each continuous attribute of the item.
Those ratings depend on the distance between the value
characterizing an item and the one presents in the user
preferences. It was chosen to use an arithmetic distance
normalized considering the values’ spectrum of each at-
tribute taken into account in order to obtain a preference
score between 0 and 100. This distance obtained it was fur-
thermore subtracted to 100 in order to have an higher value
when the user profile and the item’s one were similar.

• a value indicating how the item in account was generally
appreciated. This value is represented, in our case, by the
𝑠𝑐𝑜𝑟𝑒 field that can also influence negatively the rating
assigned to an item. This field was normalized in order to
give to it the possibility to add a value between -7,5 and 7,5
to the final score assigned to the item.

After having summed up the previous values, the final result was
normalized in order to obtain a value between 0 and 100 by dividing
it by the number of the considered items’ fields taken into account
(excluded the score one that was managed in a different way). The
case in which a rating was still over 100 or under 0 were shifted
respectively to 100 and to 0.

The mean of the ratings, belonging to items composing the re-
sults of the same query, will compose the rating assigned by a
user to the query taken into account. In order to provide more
variety between the queries ratings assigned by different users, it
was furthermore added to it:

• the average_score_translation belonging to each user profile,
a value between -10 and 10 used to indicate if a user is
severe or not in his reviews.

• a random noise between -5 and 5, in order to get less
predictable results.

Also this obtained rating was shifted in order to get a value between
0 and 100. The pseudocode related to this rating-computation pro-
cedure is illustrated with Algorithm 7.

The compute_discrete(user[field],item[field]) function in 7 checks
in which position, if it exists, a discrete value of the relational tuple
appears in the user profile. In particular, if a value appears in the first
4 positions of the user profile regarding the attribute considered, the
rating given is between 100 and 70, according to its exact position.

Algorithm 7: Utility Matrix and Complete Utility Matrix
Computation
Data: users,query_results (by reading each

*query_id*.csv),queries,utility_matrix,preprocessed_queries,
DISC_FIELDS,CONT_FIELDS,SCORE

Result: utility_matrix,complete_utility_matrix
complete_utility_matrix[][]
utility_matrix[][]
for user in users do

for query in queries do
partial_query_rating=0
for item in query_results[query] do

partial_item_rating=0
for field in item do

if field in DISC_FIELDS then
partial_query_rating+= com-
pute_discrete(user[field],item[field])

end
if field in CONT_FIELDS && field not in
SCORE then

partial_query_rating+= com-
pute_continuous(user[field],item[field])

else
partial_query_rating+=
compute_score(item[field])

end
end

end
partial_query_rating+= partial_item_rating /
(|DISCR_FIELD|+| CONT_FIELDS|-|SCORE|)
partial_query_rating=partial_query_rating /
query_results[query].len()

partial_query_rating+=user["average_score_translation"]
final_query_rating=partial_query_rating+random(-
5,5)
complete_utility_matrix[user][query] =
final_query_rating
if random(1,3)==1 then

utility_matrix[user][query] = final_query_rating
end

end
end

If the value instead appears in the last 6 positions, the rating given
is poor, between 50 and 0. If the rating regarding a value does
not appear in the user profile, it has a standard contribution
of 60. compute_continuous(user[field],item[field]) is a function that
computes the rating contribution regarding a continuous field that
characterize the relational table in this way:

100 − (𝑎𝑏𝑠 (𝑓 𝑙𝑜𝑎𝑡 (𝑖𝑡𝑒𝑚[𝑓 𝑖𝑒𝑙𝑑]) − 𝑓 𝑙𝑜𝑎𝑡 (𝑢𝑠𝑒𝑟 [𝑓 𝑖𝑒𝑙𝑑]))
((𝑚𝑎𝑥 (𝑓 𝑖𝑒𝑙𝑑) −𝑚𝑖𝑛(𝑓 𝑖𝑒𝑙𝑑))/100))

So, it computes an arithmetic distance between the user preference
and the item value regarding the same continuous field and it
normalizes it in order to obtain a value between 0 and 100. It is also
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computed the complementary of this distance in order to obtain a
similarity value.

compute_score(item[field]) normalize the item[field] in a value
between -7.5 and 7.5.

Finally, because the scores (belonging to the "score" field) in
our dataset were between 0 and 5, the relative computation was
performed in the following way:

(𝑓 𝑙𝑜𝑎𝑡 (𝑖𝑡𝑒𝑚[𝑓 𝑖𝑒𝑙𝑑]) − 2.5) ∗ 3

In this way, it is possible to compute all the ratings belonging
to each user-query combination that will be part of the real and
complete utility matrix used during the evaluation process. By
randomly keeping only the 33% of those ratings it is possible
to obtain, instead, the Utility Matrix 𝑈 used during the solution’s
idealization.

5.3 Dataset independence
The solution provided is independent from the default input
dataset. This priority in building a general solution was considered
since the dataset generation, whose algorithm adapts itself based
on the type of values present in the relational table proposed as
starting point. With the same approach, were also developed all the
strategies that were tried for both the PART_A and the PART_B
of the problem statement such that, every input given with the
requested ".csv" representation, will be accepted independently by
its fields and its cardinality.

5.4 Evaluation metrics
The evaluation metrics taken into account were:

• Mean Absolute Error (MAE)
• Root Mean Squared Error (RMSE)
• Mean Absolute Percentage Error (MAPE)

5.4.1 MAE. In statistics, Mean Absolute Error (MAE) is a measure
of errors between paired observations expressing the same phe-
nomenon. [3] In this particular case, Y versus X is the comparison
of real value versus predicted. MAE is calculated as the sum of
absolute errors divided by the sample size:

𝑀𝐴𝐸 =

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑥𝑖 |

𝑛
=

∑𝑛
𝑖=1 |𝑒𝑖 |
𝑛

In other words, its result show how close the predictions (𝑥𝑖 ) are
to the actual model (𝑦𝑖 ) on average. Low MAE values indicate that
the model is correctly predicting. Larger MAE values indicate that
the model is poor at prediction. [1]

5.4.2 RMSE. The Root Mean Squared Error (RMSE) is the square
root of the average of squared errors. The effect of each error on
RMSE is proportional to the size of the squared error; thus RMSE is
sensitive to outliers. [5]

𝑅𝑀𝑆𝐸 =

√︄∑𝑁
𝑡=1 (𝐴𝑡 − 𝐹𝑡 )2

𝑁

RMSE is used to determine whether there are any large errors or
distances that could be caused if the model overestimated the pre-
diction (that is, the model predicted values that were significantly

higher than the actual values) or underestimated the predictions
(that is, predicted values less than actual values). [1]

5.4.3 MAPE. The Mean Absolute Percentage Error (MAPE) is an-
other measure of prediction accuracy of a forecasting method in
statistics. It usually expresses the accuracy as a ratio defined by the
formula:

𝑀𝐴𝑃𝐸 =
100%
𝑛

𝑛∑︁
𝑡=1

����𝐴𝑡 − 𝐹𝑡𝐴𝑡

����
where 𝐴𝑡 is the actual value and 𝐹𝑡 is the forecast value. Their

difference is divided by the actual value 𝐴𝑡 . The absolute value of
this ratio is summed for every forecasted point in time and divided
by the number of points 𝑛.

According to some studies, a MAPE less than 5% could be con-
sidered as an indication that the forecast is acceptably accurate. A
MAPE greater than 10% but less than 25% could indicate low, but
acceptable accuracy and MAPE greater than 25% very low accuracy,
so low that the forecast is not acceptable in terms of its accuracy.
[11]

These 3 metrics were used to compare the Real Complete Utility
Matrix (available right after the dataset generation) with the Com-
plete Utility Matrix computed by the final solution (Algorithm 4),
and by the others approaches developed.

It should be noted that all of the aforementioned evaluation
metrics are only ever used to compare two full matrices, one
calculated by a developed component and the other created during
the dataset generation phase.

In order to evaluate the tasks of PART_A and PART_B of the
project, i.e., retrieve the TOP_K queries that may be of interest to
the user 𝑢, Jaccard similarity coefficient were used. This index
is exploited to compare the sets of TOP_K queries computed from
Real Complete Utility Matrix and one computed with the developed
algorithms.

5.5 Experimental results accomplished by
single components

As said in the introduction of Chapter 4, the entire development
process were driven not exclusively by reasoning deemed logical
but also by empirical results. In this section, the key experimental
results are reported. Since the final solution relies on two separate
components, it is helpful to examine their outcomes first.

5.5.1 Compact Item-Item CF metrics values. In order to determine
the values of the three evaluation metrics mentioned in the previous
section, the first experiments were carried out on the Compact Item-
Item CF, the first component of the final solution. Tables 1 and 2
contain the results, and figures 4 and 5 contain the relative plotted
charts. Regarding Figure 4, it is evident that all metrics considered in
the chart reach a plateau after considering 200 users, even though
the values are still slowly declining. Figure 5 shows a slow decline
in the metrics values rather than an initial steep section for the
lower number of queries as there is for few users.

The data indicates that in order to reach a performance plateau, it
is critical to cross a relatively consistent threshold of users, at least
for this dataset. This behavior did not occur in the query variations
considered.
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Compact Item-Item CF, n_queries (100) fixed
N_USERS MAE RMSE MAPE
10 4.048 7.6871 8.7731
20 3.7915 6.8982 8.2058
50 3.6162 6.7762 8.3140
100 3.3873 6.2586 7.5723
200 3.3025 6.0730 7.2555
300 3.2853 6.0379 7.2441
400 3.2496 5.9567 7.1688
500 3.2677 5.9896 7.2085
1000 3.2384 5.9402 7.0622
1500 3.2211 5.9151 7.0052
2000 3.1691 5.8260 6.8783
2500 3.1420 5.7890 6.8218

Table 1: Compact Item-Item CF, n_queries fixed

Compact Item-Item CF, n_users (2500) fixed
N_QUERIES MAE RMSE MAPE
10 3.2684 6.0499 7.5426
20 3.1939 5.9215 7.3000
30 3.1099 5.7911 7.0829
40 3.0310 5.7740 7.2400
50 3.2652 6.0235 7.2698
60 3.3483 6.0666 7.1452
70 3.1616 5.8735 7.0560
80 3.2359 5.9161 6.9690
90 3.2323 5.8874 6.8850
100 3.1420 5.7890 6.8218

Table 2: Compact Item-Item CF, n_users fixed

Figure 4: Evaluation metrics of Compact Item-Item CF, vary-
ing number of users

5.5.2 Compact User-User CF metrics values. The experimental eval-
uation of Compact User-User Collaborative Filtering confirmed

Figure 5: Evaluation metrics of Compact Item-Item CF, vary-
ing number of queries

what the theory says about this topic, even in this specific setting:
Item-Item CF often works better than User-User CF. As shown
in Figures 6 and 7, all three metrics considered have significantly
higher values than the values described in the previous section.

Figure 6: Evaluation metrics of Compact User-User CF, vary-
ing number of users

5.5.3 Expanded Item-Item CF metrics values. When tested, this
component behaves similarly to the previous ones, but the main
difference is that it reaches a performance plateau for all three
evaluation metrics at a much faster "speed", that is, after only 15
users considered, as shown in Table 3 and in Figure 8 (representing
only data considering the first 100 users).
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Figure 7: Evaluation metrics of Compact User-User CF, vary-
ing number of queries

Expanded Item-Item CF, n_items (7669) fixed
N_USERS MAE RMSE MAPE
2 7.3249 16.2740 13.6591
5 2.94 5.4743 5.9994
15 2.616 4.8884 5.6474
50 2.6342 4.9518 5.7490
100 2.641 4.9109 5.7269
200 2.6540 4.9446 5.7057
1250 2.7587 5.1672 5.9894
2500 2.7630 5.1779 5.9939

Table 3: Expanded Item-Item CF, n_items fixed

5.6 Baseline selection
5.6.1 Part A. Among all the approaches that were implemented
during the project development, it was chosen as baseline to be
used as comparisonmeter for the PART_A, theCompact (Standard)
Item-Item Collaborative Filtering component described in the
Section 4.1, mainly due to the implementation availability and
popularity of that approach in Data Science related works.

5.6.2 Part B. Regarding the baseline chosen in order to allow a
comparison with the solution described in the subchapter 5.7.2 for
the PART_B, it was decided to expand, as described in the Algorithm
6, the Complete Utility Matrix obtained by running the Expanded
Item-Item Collaborative Filtering on the Utility Matrix 𝑈 . The
obtained Complete user-RelationalItem_utility_matrix was used to
compute the ratings regarding the new queries.

5.7 Experimental results accomplished by
hybrid solution

5.7.1 Part A. To compare the baseline chosen in section 5.6.1 to
the final solution, two main strategies were put in place: evaluate
their ability in correctly filling the Utility Matrix𝑈 and, to give the

Figure 8: Evaluationmetrics of Expanded Item-ItemCF, vary-
ing number of users

task a more practical meaning, the approaches were also compared
in the efficiency in finding the TOP_K queries belonging to the
users of the User Set𝑈𝑆 considered.

Concerning the ability in filling the Utility Matrix 𝑈 , it was ac-
tually computed, using both the solution and the baseline method,
a Complete Utility Matrix, which was then compared to the Real
Complete one, computed as described in the subsection 5.2. Refer-
ring to the Table 4, it is possible to see that with the current dataset
under consideration (considering N_QUERIES = 100, N_USERS =
2500), the proposed solution performs slightly better than the
baseline in all of the evaluation metrics proposed.

The configuration parameters for the hybrid solution are:
• THRESHOLD_1 = 200.0
• THRESHOLD_2 = 1000.0
• WEIGHT_1 = 0.75
• WEIGHT_2 = 0.5
• WEIGHT_3 = 0.25

PART A - Utility Matrix: Compact Item-Item CF vs. Hybrid
Method MAE RMSE MAPE
Baseline 3.1420 5.7890 6.8218
Final solution 2.7446 5.1184 5.9671

Table 4: PART A - Utility Matrix: Baseline vs. Final solution

In terms of the second proposed comparison, the TOP_K queries
from both the Complete Utility Matrix computed by the final solu-
tion and the baseline are retrieved. After those query identifiers
have been stored in two sets for each user (baseline, solution), they
are compared with the actual TOP_K queries set belonging to the
Real Complete Utility Matrix from the dataset, using the Jaccard
similarity coefficient as distance. It should be remarked that the
higher the value, the more similar the two sets are. This distance is
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Jaccard similarity coefficient, versus real dataset
TOP_K Min Max Mean

1 C: 0.0 C: 1.0 C: 0.3176
H: 0.0 H: 1.0 H: 0.3296

2 C: 0.0 C: 1.0 C: 0.2621
H: 0.0 H: 1.0 H: 0.2814

3 C: 0.0 C: 1.0 C: 0.2504
H: 0.0 H: 1.0 H: 0.2753

4 C: 0.0 C: 1.0 C: 0.2529
H: 0.0 H: 1.0 H: 0.2786

5 C: 0.0 C: 1.0 C: 0.2606
H: 0.0 H: 1.0 H: 0.2862

10 C: 0.0 C: 0.8181 C: 0.2821
H: 0.0 H: 0.8181 H: 0.3115

15 C: 0.0 C: 0.7647 C: 0.3098
H: 0.0 H: 0.875 H: 0.3373

20 C: 0.0256 C: 0.7391 C: 0.3436
H: 0.0526 H: 0.8181 H: 0.3696

30 C: 0.1538 C: 0.8181 C: 0.4309
H: 0.1320 H: 0.7647 H: 0.4576

Table 5: PART A - TOP-K queries: Baseline (C) vs. Final Solu-
tion (H)

calculated considering multiple values of 𝐾 . The minimum, max-
imum and mean value of the Jaccard index for each value of 𝐾
considered are reported in Table 5.

A Dot-Box plot, represented in Figure 9, is used to visualize
the distribution of the gathered data, showing the median (middle
line in the box), 25th quartile (lower edge of the box), 75th quartile
(higher edge of the box), and the outliers. The dots, in addition, give
a sense of how many data points lie within each group. As we can
see in the figure, for the first 5 values of K, the lowest, median and
highest values of the Jaccard index are the same for both the baseline
and the solution. This suggests that there is basically no advantage
in using a hybrid approach with respect to a standard one, for low
K values, i.e., small sets of highest rated queries. Starting from the
value K = 10, median, 25th quartile and 75th quartile values related
to the solution are higher, as it can be seen by the middle line,
lower and higher edge of the boxes. It could be also noted that,
for all the values of K considered, as Table 5 shows, the mean of
the Jaccard similarity coefficient is always slightly higher for the
solution.

5.7.2 Part B. Regarding the comparison of the second baseline
chosen with our solution, a similar approach to the one described
in the subsection 5.7.1 was followed. So, given some new and unseen
queries, there were built 3 new utility matrices:

• A New Real Complete Utility Matrix, obtained by comparing
the results of each new querywith the existing users profiles
as described in the Algorithm 7.

• A Baseline Complete Utility Matrix, obtained by computing a
prediction for every user-query combination as described in
the Algorithm 5. The intermediate Baseline User-Relational
Item Utility Matrix was the same obtained by the expansion
described in the subchapter 4.2.1 and the users and queries

Figure 9: PART A - Jaccard similarity for the Top-K queries
sets

taken into account during the compression were the same
of the New Real Complete Utility Matrix.

• Another Hybrid Complete Utility Matrix built by expanding
and then compressing the Utility Matrix computed by our
solution described in the subchapter 5.7.1. The expansion
was done considering the definition of the original Utility
Matrix 𝑈 being part of our problem statement while the
compression was done considering the new queries pro-
posed during the PART_B, as described in the subchapter
4.2.3.

Once obtained those three Utility Matrices, the New Real Com-
plete Utility Matrix is compared with the baseline one and with the
hybrid one (representing our solution), using the three evaluation
metrics described in the subsection 5.4. The results are shown in
Table 6 where it can be seen that the final solution has performed
slightly better in 2 out of 3 evaluationmetrics. However, the values
gathered at this stage are all very similar to one another.

As done for the PART_A, in order to evaluate the solution in a
more practical term, the TOP_K queries from both the Complete
Utility Matrix computed by the final solution and from baseline are
retrieved. After those query identifiers have been stored in two sets
for each user (baseline, solution), they are compared with the actual
TOP_K queries set belonging to the Real Complete Utility Matrix
that has been created for PART_B, using the Jaccard similarity
coefficient as distance.

As for PART_A, the minimum, maximum and mean value of
the Jaccard index for each value of K considered are reported in
Table 7. Another Dot-Box plot, represented in Figure 10, is used to
visualize the distribution of the data. Looking at the latter, the results
obtained are nearly identical for each value of k considered. One
thing to note is that in the case of maximum k tested (25) the 25th
quartile associated with the hybrid method has a slightly higher
jaccard index than the 25th quartile associated with the expanded
method.
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PART B - Utility Matrix: Expanded Item-Item CF vs. Hybrid
Method MAE RMSE MAPE
Baseline 4.0507 6.1362 8.6332
Final solution 4.040864 6.1086 8.6342

Table 6: PART B - Utility Matrix: Baseline vs. Final solution

Jaccard similarity coefficient, versus real dataset
TOP_K Min Max Mean

1 E: 0.0 E: 1.0 E: 0.1112
H: 0.0 H: 1.0 H: 0.1148

2 E: 0.0 E: 1.0 E: 0.1497
H: 0.0 H: 1.0 H: 0.1544

3 E: 0.0 E: 1.0 E: 0.1725
H: 0.0 H: 1.0 H: 0.1781

4 E: 0.0 E: 1.0 E: 0.1935
H: 0.0 H: 1.0 H: 0.1998

5 E: 0.0 E: 1.0 E: 0.2083
H: 0.0 H: 1.0 H: 0.2120

10 E: 0.0 E: 0.8181 E: 0.2722
H: 0.0 H: 0.8181 H: 0.2802

15 E: 0.0714 E: 0.7647 E: 0.3596
H: 0.0714 H: 0.7647 H: 0.3671

20 E: 0.3513 E: 0.9230 E: 0.5917
H: 0.3513 H: 0.8518 H: 0.5972

Table 7: PART B - TOP-K queries: Baseline (E) vs. Final Solu-
tion (H)

Figure 10: PART B - Jaccard similarity for the Top-K queries
sets

6 CONCLUSION
To conclude, the main underlying philosophy followed during the
development of all the approaches tried was related in finding a

valid solution through iterations, each of which was capable of im-
proving the previously best one found. This process resulted in the
discovery of a solution composed of a hybrid recommendation
system leveraging a linear combination of Expanded-Item-Item
Collaborative Filtering and Compact Item-Item Collabora-
tive Filtering based on query result cardinality. There was also
the intent of the development of a modular solution. The use of
shared components and algorithms between the various described
sub-tasks demonstrates this.

The proposed solution was able, at the expense of slower perfor-
mance, to slightly improve in correctness all the other solutions
with standard implementations or developed from scratch. The
improvement was most noticeable during evaluations in which the
Utility Matrix filled by the proposed solution for both PART A and
PART B was compared, using the three evaluation metrics, with
the actual Real Complete Utility Matrix generated during the dataset
construction. In terms of the evaluation of the TOP_K queries of
each user computed by the proposed solution, performed using the
Jaccard Similarity, there was almost no significant advantage
in using the hybrid solution over the baselines.

In conclusion, the project’s development was useful in under-
standing that in order to create a successful recommendation sys-
tem, it is often necessary to rely on multiple approaches to achieve
a better final outcome. There is definitely room for improvement,
both in terms of the analysis of smart combinations of components
and larger-scale testing.
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