
Leonardo Vicentini
Matteo Zanotto
Luca Vian

ProjectsChain
A new way to store, sell and buy CAD projects

github.com/vicentinileonardo/blockchain-project

Blockchain Course - Final project - Academic Year 2022-2023

https://github.com/vicentinileonardo/blockchain-project


Table of Contents

Executive summary 3
Context of the scenario considered 4

Problem and target segments 4
Solution proposed 5
Value Proposition Canvases 7
Business Model Canvas 8

Technical Implementation of the MVP 11
Assumptions 11
Frameworks, Libraries, and Technologies 11

A note on centralization 11
Architecture Diagram 12
Smart Contracts 12

Master 12
ProjectNFT 13

Pre-mint operation 13
Digital Signature mechanism 14
The coordination problem 14
Leveraging the paradigm of the oracle using Chainlink 15
Hash of the project 15
Buy operation 15

Access Smart Contract 15
Custom Chainlink Client 16
Smart contracts UML 17

Smart Contract Deployment 18
Testing 18

End-to-End testing 18
Test suite 18

Smart contract optimization 18
Web3.js integration 19
dApp User Interface 19
Security 19
Operating costs 20

Conclusion 21
Further Improvements 21

TransferPayment function pattern redesign 21
Filters on catalog page 21
Better project deployment (containerization) 21

Final outcomes 21
Team 22

Personal contribution 22
Luca 22
Matteo 22
Leonardo 22

References 23
Appendix 24

Customer Segmentation 24
Data model 27

2



Executive summary
Some major obstacles arise in the daily activities of Freelancer Industrial Designers who also earn
money by selling their designs and related assembled products online. Indeed, building a strong
online presence in order to get higher visibility and design high-quality projects are fundamental tasks
that they need to face in order to be successful. If the first task is tackled by many dedicated stores
present online, the second one could be eased by giving the possibility to build their own project
using, as components, other successful ones belonging also to other authors. This proposal, by the
way, has not a trivial implementation due to the fact that exposing others’ projects in order to be used
as components, could also end up in an intellectual property violation having, as a consequence, an
unfair royalty distribution among all the designers indirectly involved.

ProjectsChain is a plugin developed in order to be integrated with already existing e-shops of
industrial designs and is able to grant, using the public blockchain and through smart contracts, the
intellectual property of the projects, even without keeping them secret, and a fair royalty distribution
between coauthors of the same final project. The straightforward and transparent mechanism
developed also will prevent non-payment and miscommunication risks, representing common
scenarios among freelancers.

The smart contracts developed in the MVP are 4:
● Master smart contract, that acts as a proxy between the dApp and the other contracts.
● Access smart contract, in order to manage the possibility (limited in time) for the

manufacturers of a project to assemble or implement it.
● ProjectNFT smart contract, in order to grant the intellectual property of a project and its sale.
● CustomChainlinkClient, used as an oracle by the ProjectNFT smart contract in order to allow,

among other things, the upload of a project on IPFS.
The two main operations provided by the smart contracts (store and sell a CAD project) can be used
through the payment of a commission, which can be fixed or variable depending on the functionality
itself, to an address specified during the contracts’ deployment.

By looking at the context of the solution proposed, many efforts have been dedicated to gas fees
optimization, to the access control of the contracts, to the testing phase and the effortless UI of the
dApp.

3



Context of the scenario considered
Problem and target segments
Thanks to the widespread availability of the internet, the number of freelancers across various fields
has rapidly increased, also because their job has become accessible to a larger number of potential
customers. Today, indeed, there are numerous freelance opportunities available online, including roles
such as developers, designers, writers, translators, and more [1]. The ability to choose how, when,
where, and with whom to work is just one benefit of these types of jobs. On the other hand, this
"independence" can lead to other issues, the main one of which is weaker legal support, which has a
fundamental role, instead, even in small companies.

A weaker legal support can bring many serious complications, especially in works that are very
creative. Indeed [2,3]:

● It’s difficult to enforce the intellectual property related to one's own works.
● There could be miscommunication between collaborating freelancers, the customers, and with

other figures involved in the process.
● There could be the risk of non-payment.

Another serious issue [2,4] is related to building a network and a strong online presence. If those
steps are indeed fundamental in order to attract new customers and in order to find collaborations and
partnerships, they still require a lot of effort and time that, otherwise, would be focused on developing
other new creative works.

Among all the freelancers, the target segment identified it’s related to Industrial CAD designers, so to
designers that use computer software such as Autocad, Solidworks, and Systemes in order to create
industrial blueprints that are mainly in 3D. Many of them produce general-purpose drawings whose
physical realization can accomplish the needs of multiple customers not known from the former.

The emphasis was given to this specific scenario because, even if there are different competitors in
the market that try to ease their identified specific needs, none of them seems to tackle all their
problems together, that instead have the necessity to be accomplished by a single platform and in a
coherent way in order to be fully overcomed. In addition, the big majority of those platforms are in
web2 which doesn’t represent a good choice in order to own digital assets (so, in order to maintain
the intellectual property) or to establish bonds and duties between a designer with his customers,
collaborators, and manufacturers (the ones who realize a physical implementation of the digital
projects).

Moreover, these bonds must not be seen as a way to only enforce the designer’s rights but also in
order to accomplish the ones of the buyers and of the manufacturers themselves. Indeed, solutions
that have not a multi-sided business model that takes into account also their needs, won’t be
successful in order to accomplish the necessity of the designers of building a strong online presence
and a strong network neither.

Here is the extended segmentation defined, focused on the designers’ segment.

4

https://www.indeed.com/career-advice/pay-salary/highest-paying-freelance-jobs
https://n26.com/en-eu/blog/what-is-freelancing
https://qonto.com/en/blog/freelancers/tools-and-tips/best-practices-for-collaboration-between-a-company-and-a-freelancer
https://n26.com/en-eu/blog/what-is-freelancing
https://aicontentfy.com/en/blog/importance-of-strong-online-presence-for-freelance-writers


Solution proposed
As it was said, there are already different solutions in order to tackle specific problems identified even
if no one seems to consider all of them together. Indeed, there exists a dApp focused on enforcing
intellectual property through the use of the blockchain (for example cadchain.com) while other
platforms are instead focused solely on designing and selling online CAD projects or their physical
implementation (cgtrader.com, vention.io).

The proposed solution aims to address the limitations of other approaches by offering a plugin, called
“ProjectsChain”, that can extend existing 3D industrial engineering platforms, such as CGTrader and
Vention.io. These platforms currently lack effective intellectual property recognition for designers, as
the only protection offered is the ability to keep design details hidden until a customer purchases
them. This approach can hinder collaboration between designers, resulting in lower-quality designs
and inadequate compensation. For instance, Vention.io has a “Community Design” section with a
leaderboard but lacks an effective reward system.
The proposed solution seeks to promote transparency and collaboration, leading to higher-quality
designs that can be fairly rewarded. This is accomplished by utilizing the (public) blockchain to ensure
intellectual property recognition through the minting of an NFT belonging to the designer of the related
project, as well as the use of smart contracts to define the bonds with which other designers can
include other designers' projects as components in their own. Those latter bonds will be used in order
to distribute the royalties in a transparent way once a project based on others is sold. Then, the use of
blockchain will be also used in order to define transparent contracts between designers and
manufacturers (in order to give also to the latter an adequate royalty distribution) and between
designers and buyers (to avoid non-payment).

In other words, with our solution, the CAD designers will be able to store and sell their projects, which
can also be composed of different subprojects (components) developed by other designers. The
manufacturers can pay a certain amount in order to be able to access a certain CAD project and,
although not yet implemented in the MVP, will get the legal right to print or assemble it for a certain
amount of time. Also, the final buyers of a certain product, interested in the physical implementation of
the associated project, will be able to buy it through the plugin developed. All the different prices
involved (the one in order to get the manufacturers the right of producing a project, the one with which
a physical product will be sold, and the economical conditions with which a project can be used as a
component in another one) will be defined by the designer himself of the project considered.

So, here are the main functionalities implemented in the MVP of ProjectsChain:
● Possibility for the designers to store their CAD Projects, encoded as JSON files containing the

geometrical information about the CAD themselves and the already existing third-party CAD
components that they use. This is done by interacting with a form in which it’s possible to
select a specific JSON file and to fill in some related fields such as a title, a description, a
price, and a royalty price.

● Once a project is uploaded, an associated NFT is minted specifying the author’s wallet
address, by paying a fixed commission. Through the tokenId of the NFT minted, it is possible
to get much of the previously specified information, including the reference to the IPFS URL
referring to the JSON project itself. This NFT will enforce the intellectual property of the Author
for a project. This will solve the previously identified issue related to the difficulty for freelance
designers in claiming their intellectual property rights for their creative works.

● The manufacturers and the buyers, that behave in the same way in the MVP, have the
possibility to grant the access to a project for a limited amount of time (3 months) by paying
the price of the project and the royalty prices of all the components that belong to it, together
with an extra 5% of the previous amount for the plugin/platform commissions. Once a project

5

https://cadchain.com
https://www.cgtrader.com/3d-modeling-jobs
http://vention.io


is bought, it will appear in their wallet together with some previously hidden details, such as
the JSON representing it. This will solve the well-known issue related to non-payment and
miscommunication between a designer with the manufacturers and buyers, ensuring also
different rights for all the parties involved in the process.

The MMP (Minimum Marketable Product) will introduce a better distinction between the
manufacturers’ and buyers’ necessities to be accomplished through the plugin proposed that, instead,
the MVP flatten.

6



Value Proposition Canvases
Due to the fact that both the problem identified and the solution proposed are multi-sided, there are
three distinct value proposition canvases.

7



Business Model Canvas

Key Partners

Accountant

Legal Expertise

Public
Blockchain

AND
POSSIBLY

Industrial
design
platforms

Key Activities

Development and
maintenance of the
plugin

Maintaining
relationships with
partners and
customers

Enhancing the
designers’
intellectual
properties in legal
scenarios

Customer service

Marketing

Value
Proposition

Intellectual
property
enforced
properly

Collaboration
and revenue
split made
simple and
transparent

Easily monetize
from your own
creativity

Finding and
receiving the
projects you are
looking for in
few clicks

Customer
Relationships

Through the
plugin website
and through
targeted
platforms. Both
will include (not in
MVP) also a
dedicated
customer service
chat.

Customer
Segments

The segments
composing the
multi-sided business
model are:

Industrial freelance
CAD designers: who
want to increase
their revenue

Manufacturers: who
want to find a new
project on which to
monetize

Buyers: who want to
find a product that
satisfies their needs

OR

Industrial design
platforms

Key Resources

Human resources:
developers,
cybersecurity
experts, legal
expertise, help
center.

Physical
resources: offices,
hardware for
development.
Leveraging cloud
services for the
deployments of
some off-chain
components of the
product

Channels

Dedicated
Website

Targeted
platforms where
the plugin will be
used

Cost Structure

Employees salaries

External Accountant Legal Expertise salaries

Revenue Streams

The designers of the platform will pay a fixed
commission in order to protect their intellectual
property through the blockchain solution.

8



Software maintenance

Cloud computing costs (hosting, …). These
costs are present because part of the
solution (plugin) is off-chain.

Blockchain costs (gas fees on contracts
deployment)

Manufacturers and buyers, once they pay in order to
get the possibility respectively of assembling a
product or getting its physical implementation, will
pay a commission dependent on the cost of the
project involved.

OR

By selling the plugin to industrial design platforms

The business model is straightforward: we offer a blockchain-based plugin that helps designers and
manufacturers monetize their job and creativity by preserving intellectual property and to allow, in a
transparent way, projects collaborations and revenue distributions. The customer segment of the
plugin, whose problems were identified, represents a very niche market since it’s aimed exclusively
towards Industrial freelance CAD designers and towards Manufacturers and Buyers of the industrial
projects stored. In the MVP the Manufacturers and Buyers are considered as a single customer entity
interested in granting access to projects by paying a project-dependent amount. The channels used in
order to communicate with and reach the customer segments regard the website of the plugin and the
platform where it will be integrated. Through them, it will be both possible to let aware the users of our
products and related news. To establish a relationship and to get in touch with our customers the main
platforms will be, also in this case, the plugin website and the one of the platforms that are using the
plugin itself. Both of them will have a dedicated customer service chat that will refer to the same
contact center, able to help the customers in using the plugin and to answer their plugin-related
doubts.

Among the key partners, we included figures such as an accountant and a legal expertise,
fundamental in order to take care of all the financial matters of the company and to give additional
legal support to the value of the intellectual property granted by the plugin respectively. Also the public
blockchain, which will have the role of mining and storing the transactions, belongs to our key
partners.

The key activities of our company are related to the development and to maintenance of the plugin
thanks to the internal software developers of our company itself. This activity, together with the need
of maintaining relationships with other partner industrial platforms, is the most important one due to
the fact that a plugin of this kind, if not well developed or maintained, cannot guarantee to overcome
the customers’ needs in the way it promises. Providing the customers’ legal support will sustain, in
case of debates, the value of the smart contracts signed and the ones of the NFTs minted, in order to
enforce their responsibilities and rights given by the plugin itself. Side activities, in order to establish
and maintain a good customer relationship, reside in the marketing and in customer service of the
company.

The key resources consist of all the human resources involved in the process (developers,
cybersecurity experts, legal expertise, help center) together with the physical ones needed in order to
develop, maintain and deploy the plugin (offices, hardware for development, cloud services for the
deployments of some off-chain components of the product).

The costs reside in the salaries of the internal and external human resources, in the ones related to
the physical resources, and in the costs needed to deploy the contracts on the public blockchain (the
gas fees for the transactions will be paid by the users).

9



The revenues, instead, are strictly dependent on the single industrial design platform to which the
plugin will be proposed.

Small platforms may not be able to sustain the costs associated with purchasing the plugin. In this
scenario, it may be beneficial to propose to them the plugin for free in order to improve the quality of
their service and traffic. In exchange for a revenue-sharing scheme, the plugin's commissions
(0,00059 ETH for minting an NFT representing a project and 5% of the designers' earnings on the
sale of their own projects, final amounts TBD) will directly reflect the developing team's revenue. The
designer does not have to pay the royalties and associated commissions for his own components if
he is interested in granting access to a project that incorporates one or more of his creations as
components. Furthermore, in this scenario, the industrial design platform will represent an additional
key partner.

In the case of large platforms, it may be more beneficial to sell the plugin straight to them with a large
down payment. They can probably afford to pay for the plugin because they have a large user base,
and they may be scared of the revenue sharing scheme in the long run.
In this situation, the developing team's revenue will be solely comprised of this sale, while the
platforms will profit from increased service quality, traffic, and commissions paid directly to them by
designers, manufacturers, and buyers. In this situation, the industrial design platforms engaged will be
considered a customer rather than a partner in a more complex ecosystem.

The team strategy is to propose at first the plugin to big and known industrial design platforms, in
order to earn in terms of plugin visibility and in initial liquid assets that can be used in order to
sustain the initial and fixed costs of our company. Then, with the development of a more complete
plugin and with the increase of our company’s EBITDA, it would be more profitable to propose the
plugin for free to small companies, in order to have in the long run more cumulative reward given by
the users’ commissions.

10



Technical Implementation of the MVP
Assumptions
The implementation of the plugin proposed relies on some assumptions related to the main platforms
to which the plugin itself will be proposed and possibly integrated. Those platforms need to provide a
way in order to convert the CAD files uploaded or drawn through them into a well-format and
consistent JSON file, in a way that will keep track of the meaningful features (shapes) composing the
projects. We assume that the platform itself will be able to automatically identify the components used
by a given project.

Frameworks, Libraries, and Technologies
The proposed solution is a fairly complex system comprised of heterogeneous technology. It was kept
in mind that other technologies or paradigms around should not have disguised the critical role
performed by the blockchain, but rather should have strengthened and supported it.

The core of the solution are 4 Ethereum Smart Contracts, namely: ProjectNFT, Access,
CustomChainlinkClient and Master. A detailed description of these will be provided in later chapters.

To manage the code compilation and migration of the smart contracts, a Truffle project was created
from scratch.

CAD Projects metadata, represented as JSON files, are stored on IPFS (InterPlanetary File System),
using the Moralis Gateway to perform the upload of the file.

A NoSQL database was used to store the token metadata. In particular, a docker-based Redis with
the RedisJSON and RediSearch modules. The choice of Redis was made solely to learn how to use a
new tool since the team already had experience with MongoDB. Since Redis out of the box does not
persist data, a proper configuration was set up to achieve immediate persistence of data.

The data models chosen for the database and for IPFS are described in the appendix.

In order to perform CRUD operations on the data, a simple Node.js server using Express framework
was created.

A docker-based Chainlink node was set up in order to fulfill a type of request later described.

The user interface was created using the Vue.js framework.

A note on centralization
Since the solution has a catalog of NFTs, it was deemed hard by the team to devise an effective
solution that would have been entirely decentralized. For instance, loading a catalog of items stored
only on IPFS is quite problematic, without having an index of the available items.
Theoretically, an achievable solution might have been accomplished with more data loaded on the
blockchain, but it would have been slower and more expensive.
Therefore it was tried to achieve a correct balance between the two worlds, giving much more
importance to the blockchain, not only for didactic purposes but also acknowledging its strength.

11



Architecture Diagram
The following diagram describes from a high-level perspective the software solution devised.

Smart Contracts

Master
The Master smart contract was designed as a proxy, in order to be the only one able to call the
mintToken() function of the ProjectNFT contract and the buyToken() function of the Access Smart
Contract through access modifiers.
Furthermore, in order to increase the security of the Master contract and to avoid malicious behavior,
it was decided to allow users to call its mintToken() method only through the conventional usage of
the dApp's UI. This was accomplished by allowing mint requests only if they were accompanied by a
request-dependent valid signature provided by the backend of the dApp that will be explained in detail
in the subsequent chapters.

12



Additionally, the proxy approach allows for upgradability on the system, as the Master contract
exposes the core functions of mintToken() and buyToken() that call the appropriate logic contracts,
whose address can be changed in a transparent way for the user/dApp if updated logics are required.

ProjectNFT
The ProjectNFT contract represents a Non-Fungible Token as it was implemented to be compliant
with the ERC721 Ethereum standard for NFTs. In particular, OpenZeppelin implementations were
used by making the ProjectNFT inherit the ERC721URIStorage contract, as it provides a trusted and
compliant foundation that can be extended with custom business logic for specific use cases such as
ours.

It is critical to define in detail the workflow in which the most crucial smart contract is involved in
order to illustrate the core logic of the software solution.

The ProjectNFT smart contract represents the digital assets of 3D CAD projects as an NFTs. It is the
mechanism that enforces the intellectual property rights of a designer on its project as for each
project upload the mint procedure is invoked so that a new non-fungible token is instantiated,
unequivocally associating a project (represented as the unique hash of its JSON representation) to
its owner (represented as the wallet address of the owner).

Additionally, the mint procedure also associates to a project its price, royalty price and
components used so that it can be bought and integrated with fair compensation in other projects.
The mint procedure finally associates to the new NFT its off-chain file location as a Uniform Resource
Identifier that points to our backend server which stores additional metadata of the project and a link
for accessing the actual project JSON file on IPFS.
On the more technical side, the mint function will safely increment a counter that is used to extract
token identifiers that identify each uploaded project: they are used as keys on private mappings to
store the project’s owner, hash, price, royalty price and components.

The mint procedure is a payable function as it also includes a fund transfer from the wallet of the
designer that is uploading the project to the ProjectsChain administrative wallet for the commission
fee for the project upload operation. The commission fee is set to a value of 0.00059 ETH per upload
(approximately around 1€ at the end of May 2023). The method mintToken() is callable only through
the Master contract, leveraging on the use of well-defined modifiers. This choice was taken in order to
avoid some malicious users’ behaviors (e.g. the possibility of minting a token by omitting, on purpose,
the components that belong to it).

Pre-mint operation
The mint operation is logically preceded in the flow of the project’s upload by a pre-mint phase that
happens by an off-chain HTTP request to our backend: it performs preliminary checks on the
project’s upload, such as: verifying that no other file with such a resulting hash is already uploaded to
IPFS, verifying prices meet the allowed range, etc. This approach can help to ensure that the minting
process is likely to succeed, and can help to avoid wasting gas fees on failed transactions.
Once the pre-mint operation is successfully carried out, the metadata is stored on the server in a
“preminted” status (not available) and the mint operation can be invoked on the smart contract. This
step could have been exploited by a malicious actor trying to trick the system changing the parameter
“on the way” to get inconsistencies to leverage.

13



Digital Signature mechanism
Therefore a Digital Signature mechanism was devised to assure that the pre-minted data
correspond to the data used for the on-chain minting.
A signature is created at the end of the pre-mint operation on the backend using a standard signing
function (ecsign). The function takes as input the data to be secured (price, royaltyPrice,
projectHash) and a private key of the same type as the ones corresponding to wallets. The function,
according to its signing algorithm, returns the signed data divided into 3 parts.
Therefore the proxied mintToken() function of the Master contract, in association with price,
royaltyPrice and projectHash, takes as argument also the previously signed data. On the Master
contract, the backend public key is stored as an instance variable.
If the provided data is not corresponding or the signed data is not original (handcrafted), the smart
contract execution flow will lead to a transaction revert due to a detected invalid mint request. On
the other hand, if the recover function (ecrecover) outputs the correct backend public key, it means
that the data was signed by the backend and the data match. Therefore with this mechanism, the
authenticity and integrity of the data are achieved.

The entire procedure is illustrated in the following diagram:

The coordination problem
The trade-off of leveraging the benefits of a pre-mint operation is that a lack of coordination between
the “two worlds”, decentralized and centralized, can lead to problems of inconsistencies.
In order to cope with this kind of problem, once the minting operation was completed on-chain, a
communication with the server was needed in order to signal that the token was minted and ready to
be displayed on the user interface of the application.
The naïve solution adopted in the first place was performing a HTTP PUT request once received the
“New Token” event from the blockchain on the frontend, in order to modify the status of the token to
be available. Because the code on the frontend is available to everyone, this approach could lead to
security vulnerabilities. Therefore, in a second iteration, it has been decided to leverage a powerful
paradigm: an oracle.

14



Leveraging the paradigm of the oracle using Chainlink
The oracle design pattern needed for solving the problem in this alternative way is the
request-response oracle and in particular Chainlink was chosen to implement the solution of this
task. As a matter of fact, the ProjectNFT inherits the interface of CustomChainlinkClient, which were
designed particularly to fulfill the contract's needs. This allows for a more secure request because it is
sent within the smart contract rather than via the frontend code. Details regarding the use of Chainlink
will be discussed in a separate section.

Hash of the project
By storing on-chain the hash of a project’s JSON representation, it was possible to uniquely identify
(with “require” Solidity checks) whether such a project was already uploaded: this allows to instantly
detect and prevent malicious behaviors of users uploading projects originally created by other
designers to sell as their own, effectively enforcing the intellectual property of a designers on its
works. Simultaneously, this also provides a compressed representation of the project as a string so
that it can be more efficiently stored.

Buy operation
The ProjectNFT contract also includes a procedure for correctly attributing the compensations and
royalties for projects purchases. This is a payable function that is invoked at the end of the buy
process by the Access Smart Contract and will transfer funds sent with the transaction of the buyer to
the wallets of the project and components owners, in the amounts specified during the mint operation.
The Access Smart Contract is, moreover, the only one able to call directly this transferPayment
function through the use of well-defined modifiers. Additionally, this procedure transfers funds from the
transaction to the ProjectsChain administrative wallet for the 5% commissions on both the prices of
the project and of all the components that it includes. If the caller of the buy operation is also the
designer of the project or of one of its components, the amount and the commissions proposed to him
to pay won’t include also the prices related to his own works.

Access Smart Contract
The Access Smart Contract handles a project's purchasing procedure and enforces buyers' access
rights. It makes use of mappings to conveniently store information about which user purchased which
project and the time validity of that purchase.

It exposes the buy function, invokable only through the Master contract through the use of modifiers,
which is a payable function that handles the procedure of purchasing a project NFT: when invoked, it
will first check to verify if the user has already purchased the given project, and will then call the
transfer payment function on the project NFT for the specific project (identified by the tokenId), along
with all funds sent with the transaction, so that the project price and royalties can be paid. Once the
payment is completed successfully, the ownership information on the mappings will be created by
binding a specific address to the token id that it has purchased, as well as the expiration date of this
ownership, which is set in three months from the current block timestamp. Finally, it returns the project
buyer's address to notify the Master contract that the operation has been completed correctly,
enabling it to emit the NewBuyer event.

The contract also exposes a public view function for retrieving the project NFTs that a certain user has
bought. It fetches the current supply of project NFT tokens (the current value of the token id counter)
and checks whether the mappings for the user address on the NFT id has a true value and that such
ownership is still valid on the current block timestamp. It will then return an array that at each index

15



(that corresponds to the project NFT with that id) contains tokenId or 0 depending if the user owns
such project NFT or not.
This method is used to enforce an authorization mechanism as it allows to determine on the
backend whether to show or not the project JSON and IPFS download link on fetch requests for
projects: the backend will check the ownership of the projects based on the user’s address by
interacting with this contract through the Web3.js library.

Custom Chainlink Client
In order to fulfill Chainlink requests, a dedicated smart contract was developed, starting from the
Chainlink documentation guidelines. This smart contract is inherited from the official ChainlinkClient
interface.
The first thing done was setting up a local Chainlink node that will be called by a standard Chainlink
oracle. The oracle's job is straightforward because it is simply a broker or middleman between the
smart contract making the request and the Chainlink node. Fulfilling external requests is done by
defining Chainlink jobs, which are a list of subsequent tasks.
As a matter of fact, these tasks are often referred to as task pipelines and can be represented by a
DAG (Directed Acyclic Graph). A task pipeline is defined through a TOML file which sets the order of
the tasks, their type and their corresponding inputs and outputs. Often the input of a task is the output
of the previous one.
In particular, a Job was created to make a HTTP PUT request to the backend server to signal the
successful minting from the smart contract in order to make available the item on the dApp catalog.
Therefore one of the tasks of the pipeline is of type “http” and it is used to send the actual HTTP
request to the server endpoint while the subsequent task is of type “jsonparse” for the parsing of the
server response. The last task submits a transaction and, on the smart contract, a callback function
that emits an event representing the correct update, is activated.
The Chainlink network is based on the LINK token which is used to reward oracles that fulfill clients
requests. ProjectNFT, being the client, needs to be funded with LINK on the initial setup.

16



Smart contracts UML
It must be noted that, for simplicity, the UML also contains the “actors” involved in the use of smart
contracts.

17



Smart Contract Deployment
In order to deploy the smart contracts described, a migration file was implemented following the
Truffle standard. Because all the contracts are dependent on each other in a bidirectional way (e.g.
the Master contract needs to know the ProjectNFT’s address in order to call its own mintToken
method, and the one of the projectNFT itself must be callable only by the Master contract), it was
necessary to deploy the contracts sequentially, specifying in the constructor of the latter deployed
the address of the previous ones. Then, in order to achieve this bidirectional dependence, it was also
necessary to specify in the first contract deployed the address of the next ones through a well-defined
setter callable only by the owner of the specific contract considered, so by the wallet address doing
the migration.
The contracts were deployed into a Ganache local network for the first part of the development, but in
order to interact with a Chainlink Oracle, the deployment was shifted to the Sepolia testnet (since
Ganache is not supported by Chainlink).

Testing
The testing phase of the developed smart contracts, and in general of the entire plugin, was seriously
taken into consideration also due to the legal importance of the scenario considered.

End-to-End testing
During the development of the smart contracts and dApp, it was chosen to perform manual testing of
every single functionality developed in order to find and rapidly fix the main vulnerabilities. It was
chosen to perform first the manual End-to-End testing because of the high number of errors present
in those initial phases of the development, which testing in an automated way would result to be more
time and effort expensive due to the necessity of updating frequently both the code, both the
automated tests themselves.

Test suite
Once the development phase was nearly complete and the interface used to communicate with the
smart contracts was not subject to planned future changes, it was decided to create a
JavaScript-based test suite using the Truffle environment and the Mocha and Chai libraries. Running
those tests during this phase allowed the team to examine edge cases rapidly, repetitively, without
human intervention, and without the need of further updates.
It was decided to rely on JavaScript tests instead of the Solidity ones because of the entire way with
which the contracts were defined (only callable through the dApp due to the digital signature
mechanism), bringing their tests suitable through the Web3.js JavaScript library, such as the contracts
methods were manually invoked by a real user of the plugin.
The tests were defined in 3 test files, one for each contract developed, and through each one of them
were tested the methods belonging to the related contract, giving emphasis both on the successful
cases, both to the ones that should revert. Due to the fact that some methods of the smart contracts
were protected by a modifier in order to be invoked only by another specific contract, it was necessary
to test those methods by the test files belonging to the allowed caller contract in order to cover all the
edge scenarios.

Smart contract optimization
Some code size problems were encountered at a certain point during the development. As a matter of
fact, since the Spurious Dragon hard-fork of 2016 [5], a limit of 24 KB has been imposed by the

18



EVM. Therefore some actions were put in place with the goal of reducing code size and also gas
costs since size is a factor for gas costs.
In the first version of the ProjectNFT smart contract 4 additional mappings were used to represent
information about the token given a tokenId. A struct with that information was created and used in a
single mapping. Some “require” statements were discovered to be repeated therefore a wrapper
function was created and utilized.
Moreover, the Solidity compiler optimizer was enabled and the parameter runs was set to 1 so that
even if a function is called once it will be optimized.

Web3.js integration
The Web3.js library was used both in the backend and dApp in order to interact with the deployed
smart contracts through method calls and event listening. To set it up, the compiled contracts’ result
JSON files were used for the appropriate method signatures and parameters encoding.

dApp User Interface
The dApp UI consists of a Vue3 web application that interacts with both the backend through its
RESTful APIs and the deployed contracts through the Web3.js library for method calls and events
listening. The dApp connects to the user’s wallet through the MetaMask browser extension, from
which it signs a web3 token that is passed in all the HTTP requests allowing for user authentication.

The dApp logic is encapsulated in dedicated state management structures, called stores. In particular,
the application contains a store for the user’s wallet address, that is set up at the start of the
application by requesting the user’s permissions to access the MetaMask wallet information (signing
the Web3 authentication token), and another store that is used for interacting with the projects’ NFTs
through both HTTP requests and Web3 method call operations: it allows to fetch and cache the NFTs
and to carry out the minting and buying operations, from the user input and transactions to the
acknowledgments from the blockchain; this store is also set up at the start of the application by
loading the compiled ABI files of the smart contracts.

The dApp consists of the following pages:
1. Homepage: application starting point for other routes.
2. Wallet: allows the user to access the information about the projects that he uploaded as NFTs

and of those that he has bought from other designers.
3. Upload: a form that allows the user to upload his project JSON and metadata for the mint

operation.
4. Catalog: an “e-shop” section in which the user can buy projects uploaded by designers.
5. Checkout: a page for the checkout phase that triggers the buy operation for a certain project

NFTs.

Security
Because of the scope of the problem identified, the security of the plugin developed has been
considered a priority since the early development phases, requiring a solution that must be secure in
order to grant the protection of the transactions and of the royalty distribution, and a strong legal
safeguard of the intellectual property of the projects uploaded. Some of the implementation choices
(already mentioned) used to enforce security off-chain and on-chain are highlighted and summarized
below:

19



● Some smart contract methods are protected by require() statements, used into well-defined
modifiers, that make them only callable through another smart contract and not directly (the
goal is to give non-owners the ability to change the contracts state only through the Master
one). This choice restricts users from utilizing more powerful lower-level functionalities in an
uncontrolled manner.

● The use of require() is also used to avoid other undesirable behavior, such as:
○ operations on a non-existent project
○ possibility of purchasing the same project twice
○ possibility of uploading the same project twice
○ not using the Master contract through the dApp (not providing a valid signature)
○ not providing enough money to purchase a project

● Web3 authentication tokens were used to identify the user at the backend and hence not
give them implementation information about projects they had not purchased or uploaded.
Authentication tokens are generated if they are not already stored on the user's browser or if
they do not match the active address provided by MetaMask.

● To force the use of the pre-mint operation on the backend, a digital signature mechanism
was implemented. As a result, only data validated by the backend pre-mint operation can be
used for the smart contract minting method.

● To signal to the backend the completion of the mint process by the smart contract in order to
make the item minted available for purchase by users, the update request is sent inside the
smart contract leveraging a Chainlink oracle rather than a simple forgeable request from the
frontend.

Operating costs
After having deployed the Master, Access, and ProjectNFT contracts on the Sepolia testnet, some
interactions were done with the methods mintToken() and buyToken() in order to understand more
about the related operational costs.

According to the tests done, the operations have larger gas fees at Noon when the deployment of the
3 contracts costs an average of 0.012406 SepETH (if it were ETH, it would be around 21€ at the
beginning of July 2023), and when the mint and the buy operations (on projects having 2
components) have an average gas fee of 0.001450 and 0.000616 SepETH respectively (in ETH
would be around 2,50€ and 1,20€ respectively at the beginning of July 2023). In other time slots,
especially during the evening, the costs are slightly lower on average.

20



Conclusion
Further Improvements

TransferPayment function pattern redesign
It would be interesting to explore the "withdrawal" pattern rather than the "push" pattern to assess
costs and security benefits, assuming they exist. This means that instead of pushing payments to
recipients, enable them to withdraw them in a controlled manner. This, however, would require a
considerable redesign of the contracts.

Filters on catalog page
A filtering system should be implemented to make project search more user-friendly on the catalog
page.

Better project deployment (containerization)
Given that the Chainlink node runs inside a Docker container, in order to communicate with a local
server on a host machine (outside Docker), the Chainlink job needs to know the host machine IP
address. The shortcut of attaching the containers to the host network unfortunately does not work on
Apple machines.
For this reason, the host_machine_ip is a parameter that needs to be provided to the Master contract.
To avoid this, spinning up the server as a Docker container and setting up a proper Docker network
would allow the Chainlink node Docker container to reach the local server using simply “localhost”
and the proper port number.

Final outcomes
In conclusion, the project's primary goal, which was to create an MVP capable of capitalizing on the
main benefits of blockchain and smart contracts, was met. The team is satisfied with the solution
proposed, able to reconcile in the MVP both basic and general purpose blockchain features, such as
the enforcement of intellectual property rights through the minting of NFTs, as well as more
context-dependent functionalities, such as royalty distribution on the sale of a project.
The way in which the project was introduced, defined, and implemented allowed for a deeper
understanding of the blockchain's benefits and drawbacks. The curiosity and enthusiasm highlighted
in developing a solution based on a real-world case study allowed for a pleasant learning, deeper
dive, and application of various new technologies covered during the course.

21



Team
The team, composed of 3 computer science students having different backgrounds and skills, decided
to use the agile development approach in order to increase flexibility and collaboration in all parts of
the process. During the first two weeks, the problem to be addressed, the solution to be proposed, the
technical stack to be used, and the way to arrange the codebase were all agreed collectively. Then,
the formalized functionalities were divided into subtasks and each one of them was assigned to each
team member, according to his own skills and interests.
Particular care was put to equally distribute the tasks strictly blockchain-related since it was deemed
fundamental especially for educational purposes.
The substeps identified were faced, once at the time, during one-week iterations with the care of
updating the entire team about each own progress through daily scrum meetings, useful also in
order to expose personal doubts or implementation issues. When facing particularly challenging
tasks, for instance solving a subtle bug, pair programming was adopted.
The following paragraph formalizes the personal contribution of each team member.

Personal contribution

Luca
● He developed the main business considerations presented in the report.
● In a coherent way to the business model proposed, he developed, in the smart contracts and

in the dApp, the royalties distribution mechanism between designers and the payment of the
commissions.

● In the dApp, he contributed to web3 authorization token instantiation and use in the endpoint
protection. In the preminting phase, he contributed to the IPFS ping and upload.

● He contributed to the development of automatic javascript tests.

Matteo
● He contributed to the initial high-level smart contracts design
● He implemented the Access smart contract and the buy token procedure, together with the

compensation and royalty distribution mechanism on the NFT contract.
● He was responsible for the design and development of the dApp in Vue.js and Web3.js,

integrating it with MetaMask, the backend and the smart contracts.
● He carried out end-to-end testing from the dApp to the backend and smart contracts to

validate the system in its integrity and the flow of operations from the user perspective.

Leonardo
● He was responsible for the design and implementation of a web server and related RESTful

APIs that performs CRUD operations against a properly configured NoSQL database (Redis),
which are critical for the pre-mint operation, IPFS upload and catalog fetching.

● He proposed and implemented the Digital Signature mechanism into the server code and into
Master Smart Contract.

● Was responsible for the Chainlink node initial setup and jobs configurations together with the
CustomChainlinkClient smart contract development and integration with ProjectNFT.

● He contributed to the initial high-level smart contracts design together with final smart contract
optimization and testing

22



References
[1] https://www.indeed.com/career-advice/pay-salary/highest-paying-freelance-jobs
[2] https://n26.com/en-eu/blog/what-is-freelancing
[3]
https://qonto.com/en/blog/freelancers/tools-and-tips/best-practices-for-collaboration-between-a-compa
ny-and-a-freelancer
[4] https://aicontentfy.com/en/blog/importance-of-strong-online-presence-for-freelance-writers
[5] https://ethereum.org/en/developers/tutorials/downsizing-contracts-to-fight-the-contract-size-limit/

23

https://www.indeed.com/career-advice/pay-salary/highest-paying-freelance-jobs
https://n26.com/en-eu/blog/what-is-freelancing
https://qonto.com/en/blog/freelancers/tools-and-tips/best-practices-for-collaboration-between-a-company-and-a-freelancer
https://qonto.com/en/blog/freelancers/tools-and-tips/best-practices-for-collaboration-between-a-company-and-a-freelancer
https://aicontentfy.com/en/blog/importance-of-strong-online-presence-for-freelance-writers
https://ethereum.org/en/developers/tutorials/downsizing-contracts-to-fight-the-contract-size-limit/


Appendix
Customer Segmentation

DESIGNERS
Market Density There are very few companies or businesses offering in

order to solve their necessity of stronger legal support, to
have better visibility of their works, and that allows a
collaboration between them.

Market Size There are 15,702 industrial designers currently employed
in the United States, the country with the most number of
industrial designers worldwide (source).

Educational level / Previous
knowledge

Should have proficiencies with the basic use of the
internet and technology.

Age Any.

Gender Any.

Income Any. The commissions in order to protect their own works
are very low.

Occupation Must be a freelance industrial designer.

Belief Must see IT innovation as a way to make life easier.

Benefits The benefits searched regard the ability to expose more
of their products by still being able to have strong control
over them.

Quantities There must exist the possibility to upload and sell a
potentially unlimited amount of products for each
designer.

Readiness The solution proposed is a disruptive technology
compared to the other solutions nowadays. Many
designers could have the need to use it immediately.

Attitude Propositive attitude in order to substitute an already
frequently used product, and willing to learn to use a tool
that is going to improve their personal working life.

24

https://www.zippia.com/industrial-designer-jobs/demographics/


MANUFACTURERS
Market Size There are many companies or businesses that offer the

possibility of printing or assembling others’ (industrial)
projects. Industrial assembly and print represent a strong
reality in the age of Industry 4.0.

Income Should be able to have initial capital in order to grant
access to a project and to have the possibility to
print/assemble it. Once this is done, they can monetize
from it.

Benefits The solution should help them in increasing transparency
in the process and easier accessibility to the projects.

Quantities A project must be “bought” multiple times by the
manufacturers in order to have granted the right of
printing it over a large period of time. Then, the project
can be sold to the buyers an unlimited amount of times
within this period.

Readiness Manufacturers have some other lucrative solutions
different from the proposed one. For this reason, there
couldn’t be an immediate necessity to get this service.

Attitude Propositive attitude in order to substitute other already
frequently used solutions.

25



BUYERS
Market Size The number of industrial products demanded every day is

very high from both the ones interested in a specific final
product, for both the DIYers that need only a specific
component.

Educational level / Previous
knowledge

Should have proficiencies with the internet and
technology.

Age Any.

Gender Any.

Income Any. The variety of industrial products is very high and
the related prices can vary a lot.

Occupation Any.

Belief They must see these kinds of online shops as a
consolidated alternative o get better products, cheaper
and more personalizable

Benefits Should help the buyers in getting directly at home the
products that they want, characterized also by a higher
variety and quality.

Quantities Any.

Readiness There are many alternatives in order to buy industrial
products online in a similar way from the buyer’s point of
view. For this reason, there couldn’t be an immediate
necessity to get this product.

26



Data model
It is useful to show the data model used in the application logic. On the centralized database, the
token metadata are a JSON object of the following shape:

"nft": {
"status": "minted",
"tokenId": 100,
"name": "sfcsfsf",
"description": "sdsdsd",
"price": 1000000000000000,
"royaltyPrice": 1000000000000000,
"owner": "0xB79F3D23E01976eEB72e66C9178f592C76Cf73DD",
"hash": "QmV9ZJiW4DJH1LbTUsug3uh9fUWzwakdTEXuDcL7nP7zxW",
"imageLink": "project2.jpg",
"ipfsLink": "https://ipfs.io/ipfs/QmV9ZJiW4DJH1LbTUsug3uh9fUWzwakdTEXuDcL7nP7zxW",
"projectJSON": {

"point": {
"x": 2423232323121212,
"y": 2.23232321212123,
"z": 2.3224243231212

},
"components": [1,42,77]

},
"signature": [

"27",
"0x4393cea29524bc50af89b43fd9858434d71522db810f60e1e662f3ad5c9e4b73",
"0x4f03bf62ac3b59044f5b12fcb398675e59c3f507c000e1ac0c04ce5ae3f16863"

]
}

The metadata saved on IPFS has the following shape:

{
"point": {

"x": 2423232323121212,
"y": 2.23232321212123,
"z": 2.3224243231212

},
"components": [1,42,77]

}

It should be noted that the keys preceding "components" might be any number and have any name.

For development and testing purposes, the “projectJSON” key is present also on the model saved on
the database. Ideally, in a production environment, with very large projects encoded into JSON, that
field will be removed.

27


