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1 Introduction

The convex hull problem consists of finding the smallest convex polygon that encloses a given set
of points in the plane, also referred as “cloud”. This problem is commonly encountered in compu-
tational geometry, and it has a wide range of applications in areas such as image processing, robot
navigation, pattern recognition and also towards economics, thermodynamics, quantum physics
and beyond.

1.1 Challenge

The challenge we decided to tackle was the parallel implementation of an existing algorithm solving
the convex hull problem. In particular, we focused on the 2D version of this issue (figure 1).

1.2 State of the Art

The topic has been extensively studied and algorithms have been proposed since the 1970s. The
complexity of the proposed algorithms is usually estimated in terms of n, the number of input
points, and sometimes also in terms of h, the number of points on the convex hull. The most
famous algorithms that solve this problem are two: the Jarvis algorithm (or Gift wrapping) which
has O(nh) time complexity and the Graham scan — O(nlogn).

We chose to use a “Divide et impera” algorithm, proposed for the first time by Preparata and
Hong in 1977 [1], as the approach is the most suitable for parallelization. It works by recursively
dividing the set of points into smaller subsets, and then computing the convex hull of each subset
independently. The final convex hull is then obtained by combining the convex hulls of the subsets.
The algorithm has a time complexity of O(nlogn). It has been proven to be one of the best
algorithms in terms of execution time, but it’s seldom used due to its complex implementation and
interpretability.

2 Problem analysis

2.1 Formal problem statement

The problem can be formalized as follows:
Given a set of points S = {p1,p2,...,pn} C R?, find the smallest convex polygon CH(S) that
encloses all the points in S. CH(S) is the output set of points.

2.2 Assumptions

The input file (cloud_to_load.txt) is composed by 222 lines, each one representing a point with
z and y integer coordinates separated by a semicolon, like the following:

-999609121;-304579271

The points in the input file are already sorted by the z coordinate. The width and height of the
area in which each point of the input set can lie is 10%, starting from the origin (0,0) outwards.
The maximum cloud size tested is 4194304 (2%2).

With the code provided it is also possible to generate a random input cloud with the function
cloud_generator (). If needed, process with rank 0 is the one in charge of sorting the input set of
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Figure 1: Convex hull problem representation

points by = coordinate, using the function gsort (cloud, cloud_size, sizeof(point), compareX);
(which is currently disabled).

2.3 Main algorithm implementation

Our workflow started from a C++ implementation of the serial “divide et impera” algorithm [2].
After a first analysis, we did a porting into the C language. The file convex_hull.c contains the
functions used to compute a convex hull, used by both the serial and parallel implementation. In
particular, the most relevant function are divide (), merger () and bruteHull (). These functions
are the implementation of the divide et impera algorithm used also by every process independently
(in the parallel scenario) to compute the local convex hull:

e divide() simply divide the point cloud in two subsets recursively until it reaches a size < 6.

e bruteHull() represents the base case, in which it is computed the convex hull of a cloud of
size < 6 through a brute force algorithm which has O(n?®) time complexity.

e merger () first finds the upper and lower tangents of two adjacent hulls, then it finds the
other points composing the merged convex hull from the two partial hulls.

In the parallel scenario all the local hulls are then merged to obtain the global convex hull using
the merger () function.

3 Main steps

3.1 Design of the parallel solution

We implemented a solution leveraging a hybrid parallelization with MPI and OpenMP master-
only style. Therefore MPI is used only outside of the OpenMP parallel regions. One advantage of
this approach is that we avoid message passing inside of SMP (shared-memory multiprocessing)
nodes. The trade-off is that all the other threads are sleeping while a master thread communicates.
In particular, we decided to implement the part related to MPI first. Once we obtained a correct
solution, we tried to optimize it by exploiting OpenMP.

3.2 Implementation
3.2.1 MPI

The first step was the creation of a derived datatype, MPI_point, representing a point. Defining
an MPI datatype allowed us to optimize the performance of the MPI communication operations:
by using an appropriate datatype, we ensured that the data was transmitted efficiently and with



minimal overhead. Additionally, it will be easier and faster to change the datatype of the point
coordinates (like float) if needed; currently long long is used.
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Figure 2: Communication topology with 8 processes

We designed a Tree-structured algorithm to compute the convex hull in a parallel way,
leveraging MPI communications. The topology of the MPI processes involved, which can be seen
in figure 2, can be only made up by a number of MPI processes that is equal to a power of 2.

After every process computes its local convex hull, half of the processes send their hull to
the other half in order to be merged. The merging step is executed logs(n.processes) times.

At each step a process with rank my_rank has the role of receiver if the following condition
holds: if my_rank % 27i = 0.

The senders are all the other processes. After a process sends its convex hull, its execution is
over. For instance:

e step 1: senders:{1,3,5,7}, receivers: {2,4,6,8}
e step 2: senders: {2,6}, receivers: {4,8}

e step 3: senders: {4}, receivers: {8}

The first implementation we designed exploited the MPI_Scatter () function in order to split and
assign a subset of points of size N/p among the available processes. The aforementioned strategy
could be adopted if there is the necessity or constraint of reading the input file by only 1 process. A
brief time analysis pointed out that this call was a bottleneck and so in order to obtain a significant
improvement with the respect of the serial implementation a new strategy was adopted.

With the current strategy, each process has the duty to read a specific section of the input
file (using the function cloud_load()); this lead to a major performance improvement with the
respect of the use of MPI_Scatter () to split the input set of points.

The last process is responsible for writing the final convex hull in the output file.

3.2.2 OpenMP

As mentioned before, OpenMP was added in a second time, to further optimize the implementation.
The number of threads to be spawned is configurable, with the 4th argument when launching the
program from command line. During the benchmarking phase, we set the number of threads to 4,
which is the configuration that gave the best results. In the shell script it is the current default.
In our solution there is only one parallel section, in the divide () function. Due to the highly
recursive nature of that section of the algorithm, no improvements were visible at the beginning
of our tests after introducing OpenMP; rather, performances were slightly worse. This behavior
is plausibly due to the overhead introduced by OpenMP as well as the fact that recent compilers



optimizations make OpenMP increasingly less effective in certain situations. Taking this into
consideration, we introduced an optimization exploiting a threshold: multi-threading is activated
only when the number of points to manage by each thread is greater than 2000. [3] [4]

3.3 Testing and validation

In order to test the correctness of the implementation we took advantage of 2 web applications:
Planetcalc tool for convex hull (using Jarvis algorithm) [5] and Desmos graphical calculator (for
input sizes greater than 4096). [6]

3.4 PBS configuration

To submit the job on the cluster, with a shell script we requested a number of chunks (select
directive) equal to the number of MPI processes, each one with a number of cores (ncpus directive)
equal to the number of OpenMP threads.

For instance: #PBS -1 select=4:ncpus=4:mem=2gb -1 place=pack:excl

The place=pack:excl option is a scheduling directive that indicates that the job should be
placed on a single node that have no other jobs running on it. This option can be used to ensure
that a job has exclusive access to the resources of a node, which can be useful for certain types of
workloads and for benchmarking. [7]

We also tried to tune the mpiexec (or mpirun) command with the map-by and bind-to options
to specify how to map and bind the MPI processes and threads when running an MPI job. Un-
fortunately, with only a few tests conducted, we were unable to achieve improvements in terms of
timing. in addition, we received warnings of various kinds. Further investigations in this direction
could likely improve the performance of the implementation.

3.5 Benchmark on the HPC@UniTrento cluster

The configuration used for benchmarking always involved 4 threads, without the I/O steps for
visualization (described in section 3.6).
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Figure 3: Execution time graph

As we can see from table 7 and graph 3, we observed a decreasing of the execution time until
16 processes, after that (32 processes) time started to increase again. In the case of the smallest
input size we observed this behaviour starting even earlier, between 8 and 16 processes.

3.5.1 Speedup and Efficiency

In parallel computing, the speedup of an algorithm is defined as the ratio of the execution time of
the serial algorithm to the execution time of the parallel algorithm (on multiple processors). This
measure is used to evaluate the performance of parallel algorithms and to determine how well they
scale to larger numbers of processors.
The formal definition of speedup can be written as follows:
Tserial

dup — — 21"
Speedup Tparallel
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Figure 4: Speedup graph

The efficiency of an algorithm is defined as the ratio of the speedup of the algorithm to the
number of processors used. It is used to evaluate the performance of parallel algorithms and to
identify potential bottlenecks or limitations in their scalability. The formal definition of efficiency
can be written as follows:

Ef ficiency = peeaup seria

D ~ pxTparallel
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Figure 5: Efficiency graph

Our results confirmed what we observed in the execution time graph 3: we have been able to
improve the performances up to 16 processes, in all the scenarios represented by the different input
sizes. When we increased the number of processes from 8 to 16, we noticed the most interesting
behavior: in case of input size = 229 the speedup decreases, with input size = 22! it increases
slightly and when it’s 222 the speedup increases greatly (table 8). This can be seen also in the
efficiency domain where we observe that in case of input size = 222 it keeps the value over 80%
until the 16 processes configuration (table 9). When we run our program with 32 processes we
observe a dramatic drop in performance with all input sizes.

3.6 Visualization

We built a Python program to plot the algorithm steps to better show how the computation is
actually split among the working processes. When launching the parallel program from command
line, in this case in the shell script, it is possible to enable a boolean flag (argv[3]) which will
enable the logs of all the relevant steps taken by each MPI process into several .txt files. The
Python program, starting from those file, simulates the behaviour of the processes in a visual
manner. A snapshot of the animation can be seen in figure 6.
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Figure 6: Snapshots of the execution of the serial and parallel “divide et impera” algorithm

3.7 Project organization

The following is how the main part of the project is organized in the repository:
e convex_hull.c: contains the functions used by both the serial and parallel implementation.
e serial.c: contains the serial implementation.
e parallel.c: contains the parallel implementation.
e Makefile: can be used to compile and run the programs.

In the README of the repository there is a section explaining how to compile and run the
code taking advantage of the Makefile.

4 Final discussion

4.1 Outcomes and results accomplished

First of all, the various resulting convex hulls were verified to be equivalent to the ones obtained
using the classical serial method, providing confidence in the correctness of the parallel imple-
mentation (3.3). With our parallel implementation, as seen in section 3.5 the convex hull was
calculated in a fraction of the time it would have taken using the serial approach.

Furthermore, as is well known, the benchmark confirmed that, even in this specific scenario,
using more processors does not always result in better running time performance, but it is al-
ways necessary to do a proper balancing of resources used and taking into account the overheads
introduced.

The results confirmed that the choice of implementing a “divide et impera” algorithm was
correct, since it is almost 100% parallelizable as evidenced by the efficiency table 9. It would be
interesting to investigate the behaviour with much larger input sizes, because our experiments
revealed an improvement limit of 16 processes, which could be pushed further.

4.2 Further improvements

A possible modification, to improve the flexibility of the implementation, could be to switch to
a Mesh-structured parallel algorithm instead of the current Tree-structured. This will allow the
exploitation of a number of MPI processes different from a power of 2.

Another possible improvement could leverage the omp task or omp taskgroup constructs, in-
troduced in recent OpenMP versions, which could be used in order to tackle recursion according
to the OpenMP community. [8] [9] [10] [11]
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A Appendix

Input size
2720 2721 2722

n. processes
1 0.266 0.639 1.298
2 0.183 0.340 0.669
4 0.083 0.186 0.369
8 0.049 0.096 0.197
16 0.055 0.075 0.099
32 0.140 0.156 0.141

Figure 7: Execution time averaged over 8 runs, after discarding minimum and maximum

Input size

2720 2721 2722
n. processes
1 1.00 1.00 1.00
2 1.45 1.88 1.94
4 3.18 3.44 3.52
8 5.41 6.69 6.59
16 4.83 8.51 13.05
32 1.90 4.1 9.21

Figure 8: Speedup averaged over 8 runs, after discarding minimum and maximum

Input size
2720 2°21 2/22

n. processes
1 100% 100% 100%
2 73% 94% 97%
4 80% 86% 88%
8 68% 84% 82%
16 30% 53% 82%
32 6% 13% 29%

Figure 9: Efficiency averaged over 8 runs, after deleting minimum and maximum
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