
Introduction to Machine Learning project Report

Leonardo Vicentini
Università degli Studi di Trento

leonardo.vicentini@studenti.unitn.it

1. Introduction
The project’s objective was to develop one or more al-

gorithms to classify the morphological class of galaxies
given an RGB image of those. The classes involved were:
{Barred Spiral, Cigar Shaped Smooth, Disturbed, Edge-
on with Bulge, Edge-on without Bulge, In-between Round
Smooth, Merging, Round Smooth, Unbarred Loose Spiral}.
In other words: it is a multiclass classification task.

The dataset provided was composed of 17736 images al-
ready splitted in train set and test set with a proportion of
70/30. We were advised to split furthermore the train set
in order to obtain a validation set useful for testing design
choices and tuning hyperparameters.

The dataset suffered class imbalance and this was taken
into account for the validation split. This characteristic
could also affect the different accuracy between classes, in
addition to the fact that, by their nature (unique shape of the
galaxy, unique colors, etc.), some classes are easier to learn
than others. For every class group in training set, 20% of
that portion was reserved for the validation set.

In total: 9928 for training set, 2487 for validation set,
5321 for train set.

2. Proposed Methods
I considered both deep methods and shallow methods to

pursue the project’s task. I noticed that fine tuning shallow
methods is enormuosly faster compared to the methods that
use a neural network alone.

2.1. Data augmentation

One thing to consider for every method is the data aug-
mentation performed: I availed myself of the methods
present in the class torch.transforms. In particular: Resize,
RandomHorizontalFlip, RandomVerticalFlip. Considering
the fact that images were already centered, I discarded Ran-
domCrop, being afraid of losing important features unnec-
essarily.

While methods that intervene on colors such as ColorJit-
ter worsened performances so they were removed from the
tranformations.

A method that I introduced in a second time that made a
valuable increase of the performance is RandomRotation.

3. Results
I started implementing algorithms based on a neural net-

work alone to exploit these later and perform feature ex-
traction for shallow methods. The best result on test set has
been achieved using VGG19 as feature extractor and Sup-
port Vector Machines. Surely there is room to improve the
performance of ResNet50 and VGG19 used alone as a sin-
gle method.

3.1. Neural networks (Deep methods)

I tried to implement a neural network from scratch but I
quickly changed direction to focus on pretrained networks.
My choice fell on ResNet50 and VGG19.

There are some characteristics in common to point out.
The first one is that after a certain amount of epoch, in my
experiment usually 35/40, both ResNet50 and VGG19 tend
to overfit, this means that the accuracy on the training set
keep growing but the accuracy on validation remains stable.
It is then necessary to change the learning rate in order to
achieve a longer improvement during epochs. The solution
that I adopted is using a very simple learning rate scheduler
that decreased the lr by a factor of 10 after a certain number
of epoch.

The loss function used for both neural networks was
Cross-entropy loss which is well known as the standard for
image classification and for multi-class classification prob-
lems in general.

Every epoch the model was saved if the loss on valida-
tion set was lower than the best until then. After the entire
training cycle, the best model was loaded to perform the
testing phase.

3.1.1 ResNet50

At the very beginning I struggled using this type of method
because I could not break the threshold of 50% of sample
wise accuraccy even after 40+ epochs. When I removed
the part where I freezed some layers of the network the

1



accuracy started rising up. I first used this network with-
out particular changes. Mini-batch sizes of the data loader
were changed first, the sized used were 128, 64, 32 but this
didn’t lead to major performance improvement. The op-
timizer chosen was Adam with a starting learning rate of
0.001. In my experiments with this neural network (and as
well with VGG19), after epoch 30/35 the performance are
stable and without any notable improvement as the plateaus
in 4 and 5 testify.

3.1.2 VGG19

VGG is a convolutional neural network developed by Visual
Geometry Group (University of Oxford). There are other
variants of VGG like VGG11, VGG16 but I started right
away with VGG19 which is a deeper network than VGG16
but I didn’t have any major timing problems, time required
remained quite similar to using ResNet50. At the beginning
I used the same optimizer as ResNet50 but the results were
poor. I found that for VGG the advised optimizer was SDG
so I introduced it with an initial learning rate of 0.01. The
final results were slightly better than ResNet50.

3.2. Shallow methods

For these type of methods, it is necessary first to extract
some features from the image. In order to perform this
operation, I preferred the recommended way, so I used a
pretrained convolutional neural network. The only change
needed in order to use a neural network as a feature extrac-
tor is to substitute the last layer, the one used to classify in
the 10 classes with an identity layer. In particular, referring
to the 2 networks used previously, I changed the layer fc of
the ResNet50 and the layer classifier for the VGG19.

3.2.1 VGG19 + K-nearest neighbors

I tried to improve the initial performance with the default
number of neighbors of 5, tuning only the K neighbors hy-
perparameter with odd numbers. The best result on the val-
idation set has been achieved with the values 9 and 11, with
an Acc of 0.87, mAcc of 0.86 and mIoU of 0.76. After K =
11 the results are stable and not improving.

3.2.2 VGG19 + Decision Trees

Initial results were the lowest I discovered so I stepped
quickly towards Random Forests without focusing much on
tuning.

3.2.3 VGG19 + Random Forests

The hyperparameteres tuned in this case were the criterion
(the function to measure the quality of a split) and the num-
ber of estimators (the number of trees). For the first one

I tried both entropy (E) and gini (G) impurity measures.
The parameter max features that changes the number of fea-
tures to consider when looking for the best split was left as
default, so all features were taken into consideration. As
we can see in Figure 2 the performances on every accuracy
measure vary by 3% changing the hyperparameters.

3.2.4 VGG19 + Support Vector Machines

This method is the one that reached the best performances
on the test set, with 85.6% on sample wise accuracy and
83.8% on class wise accuracy with the default settings. I
tried to change the regularization parameter C, from the de-
fault 1.0 to 0.1. Another parameter that has been tuned is
the kernel function with the values of: linear (L), poly (P),
rbf (R)(default), sigmoid (S). As we can see in Figure 3, the
best model is L0.1 with very slight improvements of 0.5%,
0.2% on Acc and mAcc from the default settings.

3.2.5 Analogous shallow methods using ResNet50

As we can see in Figure 1 the performances with this ap-
proach were worse in my experiments. Probably working
more on the tuning of the ResNet50 could led to better re-
sults.

Figure 1: Performances of all shallow methods on valida-
tion set

2



Figure 2: Performances of Random Forests on validation
set changing hyperparameters

Figure 3: Performances of SVM on validation set changing
hyperparameters

Figure 4: ResNet50: Loss and Sample-wise accuracy dur-
ing 50 epoch

Figure 5: VGG19: Loss and Sample-wise accuracy during
50 epoch

3


