
Distributed Sysytems 1 Project

Multi-Level Distributed Cache
Clocchiatti Jacopo1 and Vicentini Leonardo1

1University of Trento

January 14, 2024

1 Introduction

In today’s data-driven world, efficient and scalable data access
is a critical concern for applications and services. To address
the challenges associated with high-demand data retrieval and
storage, we have embarked on the development of a distributed
cache system. The primary goal of this project is to alleviate
congestion at the main database, enhance performance, and
ensure data consistency in a distributed environment.

This distributed cache system is designed to support multi-
ple clients that read and write data items stored in a database.
However, it introduces an additional layer of cache nodes,
strategically arranged in a two-tier tree topology. This hier-
archical structure not only improves data retrieval efficiency
but also ensures that write operations maintain eventual con-
sistency across the cache layers. We can see an example of the
(partial) structure in the following figure.

Figure 1: System diagram (partial view)

The system is optimized for read operations, ensuring that
frequently accessed data is readily available to clients. By
caching highly-requested items and handling most client re-
quests independently, we reduce the burden on the main
database and significantly enhance the overall system perfor-
mance. However, for write operations, we follow a different
approach. Writes are routed to the main database to maintain
the integrity of the data, and updates are propagated through
the cache layers to ensure eventual consistency.

In this project, we implement the distributed cache system
using Akka actors. Clients, caches, and the main database are
all modeled as actors within the Akka actor system. The choice
of Akka provides a robust and concurrent framework for build-
ing such a distributed system, where each actor encapsulates
specific functionality and communicates asynchronously.

Clients interact with the system through the cache nodes,
which are responsible for processing read and write requests.

These requests include basic operations like Read and Write,
as well as critical variants, CritRead and CritWrite, each with
specific guarantees.

Additionally, the system considers the possibility of cache
crashes and implements crash detections based on timeouts.

In summary, this project presents the design and implemen-
tation of a distributed cache system that addresses the chal-
lenges of data access in a distributed environment. By utilizing
Akka actors and a hierarchical cache structure, we aim to pro-
vide efficient, high-performance, and eventually consistent data
access for clients. This report will delve into the technical de-
tails of the system’s architecture, operations, crash recovery,
and critical operations guarantees.

2 Requirements

The project includes clients, caches and one database, all being
Akka actors. The initial tree structure is predefined and consist
of two level of caches: L2, in direct interaction with clients,
and L1, parents of L2 and directly connected to the database.
A client contacts a given L2 cache with a request. All request
types refer to a specific item, identified by a key. Write requests
also include the new value for the item. Requests fail if the
item is not accessible at the time of operation. The cache then
replies with an appropriate message to the client. Caches may
fail so the system should implement a simple crash detection
algorithm based on timeout. A client detecting a crashed L2
will select another L2 cache and redirect its request. An L2 that
detects its L1 parent has crashed will select the main database
as its parent. The possible operations are four:

• Read . When an L2 cache receives the request, it responds
immediately with the requested value if it is found in its
memory. Otherwise, it will contact the parent L1 cache
which will do the same, contacting the database if needed.
Responses follows the path of the request backwards, until
the client is reached. On the way back, caches save the
item for future requests.

• Write . The request is forwarded to the database, that
applies the write and sends the notification of the update
to all its L1 caches. All L1 caches propagate it to their
connected L2 caches. The update is potentially applied
at all caches, which is necessary for eventual consistency.
However, only those caches that were already storing the
written item will update their local values.

• CritRead . Fetches the current value stored in the
database for a given key. Therefore, contrary to a Read,
the request is forwarded to the database even if the L2 or
the L1 cache already hold the item.

1



• CritWrite . The request is forwarded to the database as in
Write. However, before the write is applied, the database
must ensure that no cache holds an old value for the writ-
ten item. No client should be able to read the new value
and then the old value, from any cache. Once the database
has ensured the cached items have been cleared/updated,
it finalize the update.

2.1 Assumptions

We highlight some assumptions about the system and the im-
plementation. Starting from the data held by the system which
consist of integer values, each attached to a globally-unique key
(a key-value store). We assume that the node of the system
do not change over the execution of the protocol. We assume
links are FIFO and reliable, caches have unlimited mem-
ory for storing items. A single cache could potentially deal
with multiple requests at one time. Cache nodes may crash,
entering a "crashed mode" in which they ignore all incoming
messages and stop sending anything. In addition, all the items
are removed from the crashed caches but they retain informa-
tion about the system, like topological information. We assume
only one crash at a time, system-wide. Client actors and the
database actor do not crash. Before sending a new request, a
client waits for its previous one to finish.

3 Architectural Choices

3.1 Actors structure

All the actors have some common attributes. These common
attributes are: the id of the actor, the timeouts data structure
(an hash map with the type of timeout and its value in seconds).

3.1.1 Client

Clients have information only about L2 caches, because if they
receive a timeout from the L2 cache that they’re connected
to, they need to know to which L2 cache they need to try to
connect. Moreover they keep a list of all the operations they
performed during the execution.

3.1.2 Database

The database actor, besides the key-value store, has informa-
tion about all caches and also data structures for the support
of CritWrite operation (described later).

3.1.3 Cache

Caches are by far the most complex actor and have many ad-
ditional information, among which:

• the type of cache they represent (L1 or L2).

• a list of Requests in which the cache is and was involved.

• additional information of support for the crash recovery
procedure.

• an hash map containing temporal data waiting to be con-
firmed to be written in the context of a CritWrite opera-
tion.

• additional information of support for CritWrite opera-
tions.

3.2 Configuration and Set-up

We implemented a way to configure the system based on a
YAML file. In this file there are specified information to build
system, the maximum number of each actor type (clients and
caches), a fixed number if we want complete control, all the
timeouts durations. The system has two "modes" to be built, a
custom mode and an automatic mode. In the custom mode the
system will create the specified number of caches and clients.
In automatic mode there’s another option that set the system
to be structured in a balanced or unbalanced way. If the system
is set to be balanced all L1 caches will have the same number
of L2 cache as children and similarly all L2 caches will have
the same number of clients connected to them. If the system
is unbalanced those number varies for each actor (every L1
cache will have a random number bounded to the specified max
number and so on). Lastly, a master actor with information
about the whole system is added.

3.3 Monitoring and Interactivity

To monitor and interact with the entire system we choose to
follow an approach based on a web server, using the specific
Akka component. We can send certain operations to execute by
sending a request to this server that interact with the system
to concretely execute said operations. Two of these operation
are the crash and the recovery of caches.

Another operation is the consistency check. It is executed
by the master that has information about the whole system.
It send a requests for all their data to the database and to all
the caches. It takes the information of the database as ground
truth and checks if the information of the caches are consistent
with the database and if they’re not it highlights which cache
is inconsistent and for which value. All 4 operations (Read,
CritRead, Write, CritWrite) could be started for clients from
the web server with a specific endpoint.

The list of available endpoints is available on the
"readme.md" file of the project.

3.4 Operations implementations

Each client can fire Operations, which are translated into var-
ious Requests along the tree of caches. Each cache could be
responsible for multiple Requests at the same time. A Requests
is considered fulfilled when the involved cache send a response
(either successful or failed).

3.4.1 Read

When a client starts a Read request it asks to the L2 cache it is
connected to for the key it needs. If the L2 cache contains that
value it directly responds to the client otherwise it redirect the
request to its parent L1 cache adding itself to the path field
of the message. The L1 cache works in the same way, with the
only difference being that if it does not contain the needed value
it will ask the database for the value. The database checks if
the value exists, if it does not it will respond with an error
otherwise it will send the response with the requested value. In
the reverse path (recovered from the path field of the request
message) the visited caches will add the value to their internal
storage.

3.4.2 Write

When a client starts a Write request, the message will reach
the database passing through the caches populating the path
field. The database will write the new value and will send the

2



Figure 2: Read operation sequence diagram

Figure 3: Write operation sequence diagram

successful response to the client leveraging the path field from
the request message. After that the database will broadcast an
update value to all the caches connected to it. As a matter of
fact, every cache that receives the FillMsg checks if the updated
key is present in their local storage, if there is, then they update
the value in their local storage and they pass the update on
their child caches (not to clients). This is a tradeoff, as it was
assumed that if the value is not present in the current L1 cache,
it is not present in the L2 cache children.

3.4.3 CritRead

When a client starts a CritRead request, said request will be
passed directly to the database with the path field of the
request populated by the caches from which it passes through
(even if the caches hold the value). The database then checks
if the requested key exists, if it does not then it responds with
an error, otherwise it responds with the corresponding value.
The caches "traversed" by the response will add or update the
key-value pair to their local storage.

Figure 4: Critical Read operation sequence diagram

3.4.4 CritWrite

CritWrite is the most complex operation of the system. In
particular, aside from the conventional request and response it
leverages also the following (specific) messages:

• ProposedWriteMsg
• AcceptedWriteMsg
• ApplyWriteMsg
• ConfirmedWriteMsg

When a client starts a CritWrite request the message will
reach the database passing through the caches populating the
path field just like a standard Write operation. To explain
how CritWrite was implemented, it is useful to go through
every step of the final phase in details, highlighting each actor
involved:

1. [DB] Checks if the key is already present in ongo-
ingCritWrites.
(a) [DB] If yes, the CritWrite will not be accepted.
(b) [DB] Sends a refused CriticalWriteResponseMsg.

2. [DB] Otherwise, adds into ongoingCritWrites the key re-
quested.

3. [DB] Sends ProposedWriteMsg to all connected caches.
4. [DB] Creates a set of caches that are expected to accept

the CritWrite, starting from the L1 caches.
(a) [DB] Sends the message also to all L2 caches that are

connected directly with the database (due to previous
crashes), if any.

5. [DB] Sets a timeout ("accepted_write"), waiting for all
expected AcceptedWriteMsg.

6. [L1 cache] Receives ProposedWriteMsg.
(a) [L1 cache] Writes into tmpWriteData structure the

key-value pair.
(b) [L1 cache] Forwards to all children the Proposed-

WriteMsg.
(c) [L1 cache] Waits for all AcceptedWriteMsg of children.

7. [L2 cache] Receives ProposedWriteMsg.
(a) [L2 cache] Writes into tmpWriteData structure the

key-value pair.
(b) [L2 cache] Clears from the key-value store the in-

volved key-value.
(c) [L2 cache] Sends to parent an AcceptedWriteMsg.

8. [L1 cache] Receives AcceptedWriteMsg : checks every time
if all children caches have responded with this message for
that specific key.
(a) [L1 cache] If yes, clears from the key-value store the

involved key-value. Clearing only when all children
respond is useful to avoid an "unnecessary data loss"
for an aborted CritWrite due to the children of this
specific cache.

3



(b) [L1 cache] Sends to database an AcceptedWriteMsg.
9. [DB] Receives AcceptedWriteMsg : checks every time if all

children caches have responded with this message for that
specific key.
(a) [DB] If yes, we are guaranteed all caches have

cleared the old value, DB adds new key-value
pair to its key-value store.

(b) [DB] Sends ApplyWriteMsg to all children caches.
(c) [DB] Sets a timeout ("confirmed_write"), waiting for

all expected ConfirmedWriteMsg.
(d) [DB] If instead, the "accepted_write" timeout is

reached, database starts the abort procedure.
10. [L1 cache] Receives ApplyWriteCache.

(a) [L1 cache] L1 cache adds involved key-value pair
to its key-value store.

(b) [L1 cache] Removes key-value pair from tmpWrite-
Data.

(c) [L1 cache] Forwards ApplyWriteMsg to all children
caches.

11. [L2 cache] Receives ApplyWriteMsg
(a) [L2 cache] Adds key-value pair to its key-value

store.
(b) [L2 cache] Removes key-value pair from tmpWrite-

Data.
(c) [L2 cache] Sends to parent a ConfirmedWriteMsg.

12. [L1 cache] Receives ConfirmedWriteMsg : checks every
time if all children caches have responded with this mes-
sage for that specific key.
(a) [L1 cache] If yes, sends ConfirmedWriteMsg to

database.
13. [DB] Receives ConfirmedWriteMsg : checks every time if

all children caches have responded with this message for
that specific key.
(a) [DB] If yes, sends an accepted CriticalWriteRe-

sponse back to the requesting subtree (leveraging the
path as always).

(b) [DB] If instead, the "confirmed_write" timeout is
reached, we anyway proceed with an accepted Criti-
calWriteResponse: we are guaranteed that no old
key-value pair remained in any cache. Probably
some caches, due to crashes will not hold the new
value but this is not a strict requirement of CritWrite.

More assumptions or edge cases. Concurrent CritWrite
operations are supported but only with different keys: database
will refuse a CritWrite request with a key involved at the mo-
ment, checking the ongoingCritWrites data structure.

During CritWrite, timeouts are fired only by the
database: "accepted_write" and "confirmed_write". In
future versions of the system, caches could also deal with
timeouts of the CritWrite. For instance, L1 caches waiting for
AcceptedWriteMsg from L2 caches children could be such a
case.

Crashes during CritWrite . A crash that precludes the
arrival of one of the AcceptedWriteMsg to the database leads to
the abort procedure. In this context, as can be seen following
the steps in the previous section, the system experience a
so-called "unnecessary data loss" since some caches have
cleared the key-value pair involved in the CritWrite that at
the end is not concluded but aborted.

Abort procedure. If database reaches an "ac-
cepted_write" timeout, an abort procedure is put in
place. At this point: database did not add the key-value
pair to its data, some caches have accepted the CritWrite

(they have tmpWriteData for that key), and they will have
cleared the value on data hashmap (unnecessary data loss).
We need to clear tmpWriteData for that key to allow future
CritWrites on that key which otherwise caches would consider
the previous CritWrite still ongoing. Therefore, database
sends a DropTmpWriteDataMsg to all connected caches. A L1
cache receiving said message will remove from tmpWriteData
the key-value pair and will forward the message to L2 cache
children. In addition, database will clear operation-specific
data structures and send a refused CriticalWriteResponseMsg
to the requesting child. Note that during a cache crash,
tmpWriteData is cleared as well as standard data.

Some tradeoffs. Since the amount of messages used in a
CritWrite operation is quite heavy and because "unnecessary
data loss" could occur during aborted CritWrites, to speed up
future reads (system should be read-optimized), it has been
decided to update the value involved in the CritWrite in any
case, even if the cache did not previously hold the value.

It could have been decided to store the CritWrite key-value
pair in the tmpWriteData structure on the path that is getting
up to the database, to save messages. It has been chosen
that the value must not be stored on the way up because a
concurrent CritWrite for the same key could be on the way
up on another path. As it is currently implemented, the
first CritWrite request that arrives to the database will be
performed.

Due to lack of time, the protocol of the CritWrite was
simplified from the initial high-level ideas of the team. As
a matter of fact, crashes before the gathering of all
AcceptedWriteMsg by the database will always lead to an
abort of the CritWrite operation.

In some sense, the steps after the addition of data by
database could seem not needed. These "extra steps" were
added to the protocol to counterbalance the "unecessary
data loss" that occurs on an aborted CritWrite. Due to the
simpler and less tighter protocol (timeouts managed only by
database), this situation could potentially occur many times
in a real scenario.

The "clear data" step on the caches makes possible the fact
that on a "confirmed_write" timeout, database has already
the guarantees that no old value for the involved key can be
seen by Clients. Therefore the database can send back anyway
an approved CriticalWriteResponseMsg back to the requester,
since the key-value pair is cleared or updated with correct value.
If all children answer with a ConfirmedWriteMsg, the proce-
dure will simply be quickened in comparison to waiting for said
timeout.

3.5 Crash system and Recovery

3.5.1 Crashes

L1 and L2 caches can be put in "Crash mode", that is, ig-
noring all incoming messages until a RecoverMsg, via a spe-
cific endpoint of the HTTP server (or by strategically placing
the crash() function in code). When a crash occurs, all data
and previous requests information are deleted. However, caches
keep their topological knowledge, for instance a L2 cache keeps
the reference of its parent.

4



Figure 5: Critical Write operation sequence diagram

3.5.2 Timeouts

In order to detect crashes of caches, clients and caches lever-
ages timeouts, which are basically messages to be sent to
themselves after a specific timespan.

Clients. When a TimeoutMsg is received by a client: we
first check if the specific Operation was concluded in the mean-
time and so if the timeout must be ignored. In order to perform
such control, requestId field is leveraged. If the Operation is
still ongoing (not finished) then we check if the timeout should
be skipped due to previous communications by L2 cache parent
(TimeoutElapsedMsg). This is the case when a L2 cache time-
out its parent L1 cache and so tells the client to wait more and
to skip the very next timeout, like explained in the next sec-
tion. Therefore when receiving a TimeoutElapsedMsg an-
other timeout will be started by the client, this is not a problem
since onTimeout() will check the requestId.

The retryOperation() function is used to retry to perform the
operation when a client connects to another L2 cache (due to
previous timeout on L2 cache).

Clients will not receive double response messages since
presumably (we assume that) the L1 cache parent (mandatory
transition point) is crashed after sending a request message
to the database (and not yet recovered). So the first response
is lost since it will be sent to a presumably crashed cache.
Therefore, another response to a L2 cache is fine.

L2 Caches. If a L2 cache timeouts on a L1 cache parent,
then it tries to connect directly to the database. L2 cache also
sends a TimeoutElapsedMsg which is used by the L2 cache to
inform the client to wait more and to skip a timeout (and
starts a new one). In that way the client does not wrongly try
to connect to another L2 cache. It would be wrong because
the problem (crash) is upon the upper L1 cache and the L2
cache child has experienced a timeout against it. The L2 cache
simply needs more time to connect to the database and to retry
the request.

When said L2 cache receives a ResponseConnectionMsg it
means that now the L2 cache is directly connected with the
database. Then, the retryRequests() function is called to retry
to forward not yet fulfilled requests. Note that could be more
than one since unlike the clients, caches do not perform only 1
requests at time.

In the cases of Read and CritRead, no particular problems
arise: L2 cache forward the request to the database, keeping
in mind that the database could have already been asked the
same request from the crashed L1 cache (in some edge cases),
the response however never arrived to the L2 cache (due to the
L1 cache crash), so asking again is correct.

In the case of Write: if the database has already been re-
quested the same request from the crashed L1 cache, we over-
write the same value in the database, which is not an issue.

Finally, in the CritWrite case: if the database has already re-
ceived the same request from the crashed L1 cache, it will deal
by itself with the new message sent during retryRequest() pro-
cedure and send a refused CriticalWriteResponseMsg, since the
key is already present in the ongoingCritWrites data structure,
otherwise, it will start the normal procedure of CritWrite.

As clients, L2 caches ignore timeouts for already fulfilled
request.

L1 Caches. L1 caches do not fire timeouts during the 4
Operations, due to assumptions (database does not crash). But
they leverage a specific timeout ("response_data_recover")
on a step of the recovery procedure as further described in the

5



following section.

Database. Database could potentially start 2 timeouts,
during the CritWrite operation: "accepted_write" and "con-
firmed_write".

Upon receiving a "accepted_write" timeout database
checks 2 cases: if requests is already fulfilled (similarly to clients
and L2 caches) or when a CritWrite is known to be accepted
but not yet completed (confirmed) using the specific data struc-
ture acceptedCritWrites. If one of the above described cases is
true, the "accepted_write" timeout is ignored. If one L1 cache
do not respond to database with an AcceptedWriteMsg, it could
mean 2 things: L1 cache is crashed or one of the children L2
cache is crashed. In any of these two cases, if "accepted_write"
timeout is reached (and the cases to ignore do not hold), the
previously described abort procedure is put in place (refused
CritWrite and remedial actions).

Upon receiving a "confirmed_write" timeout, database
approves anyway the CritWrite because the protocol ensures
that no old value for the specified key is stored in any cache,
as described in the operation’s steps.

If the "confirmed_write" timeout is not reached before fin-
ishing the operation it is the case that all ConfirmedWriteMsg
are collected: we can speed up the sending of CriticalWriteRe-
sponseMsg to the requesting client using path. This timeout
is just used to finalize the operation, since guarantees are al-
ready satisfied when database adds data, so before setting the
"confirmed_write" timeout. Then, as always, when the "con-
firmed_write" timeout is reached anyway, it is ignored since
operation is finished.

3.5.3 Recovery

In order to recover from a crash, a RecoverMsg must be sent to
the crashed cache. Different recovery approaches were chosen
based on the type of the cache involved.

L1 cache recovery procedure
1. L1 cache crashes, loses all data.
2. L1 cache recovers.
3. L1 cache asks all its children for the keys they hold.
4. L2 caches respond with their own key-value pairs,

with the exception of those keys that are currently involved
in a not yet completed CritWrite operation.

5. When all responses from children arrive or a specific time-
out ("response_data_recover") is reached, L1 cache ag-
gregates those keys in a set called recoveredKeys.
(a) This step is done because those keys are the one

that previously L1 cache held, being that L1 cache
a mandatory transition point in the operations that
filled L2 caches.

(b) If not all the L2 cache children respond to the key
request (and so a specific timeout is fired), at the end
the recovering L1 cache will have only a subset of its
data before the crash.

(c) In addition, the recoveredValuesOfSources data struc-
ture on the L1 cache holds the key-value pairs for each
child contacted in the previous step.

6. L1 cache asks the database (source of truth) for "fresh"
values for the recoveredKeys

7. Database sends back to requester L1 cache the requested
key-value pairs.

8. L1 cache stores the data received and therefore holds the
whole set of key-value pairs prior to the crash (or a subset if
some children crash during L1 cache recovery procedure).

Figure 6: L1 cache Recovery operation sequence diagram

9. L1 perform an extra step to update the data of L2 caches
children if needed.
(a) The recoveredValuesOfSources data structure is lever-

aged to loop through each (non-crashed) child and
and each key-value pair they held to look for incon-
sistencies with respect to fresh data coming from the
database.

(b) An UpdateDataMsg containing only inconsistent
key-value pairs is sent to children, if at least one
inconsistency is found (to save bandwidth).

The goal of this approach is to move toward eventual con-
sistency. L2 caches may become "isolated" with stale data for
a certain amount of time: without the connection to a L1 cache
parent and without new requests (that would eventually lead
to a direct connection with the database). With the (eventual)
recovery of the L1 cache parent, the related subtree is subject
to a beneficial "data refresh" with data values coming from
the source of truth for keys previously held.

For instance, a use case is a L1 cache crash before receiving
the FillMsg of a Write operation. The related subtree, which
previously held that specific key involved, is not filled but the
onRecover() function of L1 cache will refill the subtree with
"fresh" data.

A different strategy may have used fewer message exchanges,
with the request of the whole data dump from the recovering
L1 cache to the database. The aforementioned approach is
not ideal if the database is very large (and so the data dump
time), as the L1 cache will fill up with a large and not specific
amount of key-value pairs. For these reasons we chose the
tradeoffs described before.

L2 cache recovery procedure
1. L2 cache crashes, loses all data.
2. L2 cache recovers.
3. No specific actions are put in place: L2 cache will simply

re-populate itself by being involved in future Operations.

6


	Introduction
	Requirements
	Assumptions

	Architectural Choices
	Actors structure
	Client
	Database
	Cache

	Configuration and Set-up
	Monitoring and Interactivity
	Operations implementations
	Read
	Write
	CritRead
	CritWrite

	Crash system and Recovery
	Crashes
	Timeouts
	Recovery



