
Daytrip: a service-oriented web application for inspiring daytrips in Italy

Service Design and Engineering course - Final Project

Leonardo Vicentini, Luca Vian

github.com/vicentinileonardo/daytrip

20 June 2023

1 Introduction

The project topic was chosen based on the fact that the team deemed interesting to solve a simple yet potentially very
expandable web application with a service-oriented approach. The concept is pretty straightforward, the web app suggest a
ranked list of daytrip destinations, reachable with the time at disposal of the user, based on some indicators (like weather, air
pollution, etc.). The project incorporates both internal (e.g. users and destinations data) and external sources of data (e.g.
ranges, weather, email validator, etc.).

The service-oriented paradigm enabled the team to add ranking indicators in an iterative way during the entire development
of the project. The potential expansion of the ranking system (with new indicators) is very easy thanks to the adoption
of the service-oriented paradigm. The service-oriented approach allowed the team, with different skills and backgrounds, to
work efficiently to achieve the final goal, implementing services both in Python (Flask) and in JavaScript (Node.js).

Another important concept is the one of separation of concerns: services are decoupled components so it is possible to
modify a service without the worry of breaking another one. If a change on the codebase went wrong, leading to errors, only an
isolated service would be affected and it would be easier to debug.

A goal set by the team before the development of the project was that service implementations should have been general,
reusable in different scenarios (not attached to the domain specificity) and scalable.

2 Architecture

The application is designed with a 4-tier architecture made of: Data layer, Adapter layer, Business Logic layer and
Process Centric layer. The total number of services used or created is 25: 8 in the Data Layer, 9 in the Adapter layer, 5 in
the Business Logic Layer, 3 in the Process Centric Layer.

Docker Compose were leveraged to define and deploy the multi-container application introduced above with ease. With
a single file it has been possible to define and manage the entire architecture of services. Although Docker Compose it is not
the industry standard for production due to some limitations (e.g., downtime during deployment, only single host), it is perfect
for the scope of this software project.

The diagram of the architecture can be seen in figure 1.

2.1 Endpoints

REST (REpresentational State Transfer) architectural style was chosen for the development of the services due to its generality,
simplicity, and style that was suitable for representing the resources identified. Indeed, all the endpoints built are able to operate
on a single and well defined entity (for example, ’/users’ or ’/geocodes’) and also the hierarchical URI specification was followed
(for example, in ’/destinations/reachable’ and in ’/destinations/best’), in order to define relations between entities or in order
to filter and organize them. The methods considered during the development of the architecture are GET, POST, PUT and
DELETE.

Documentation of the endpoints was written leveraging Apiary service and the OpenAPI 3.0.0 specification. The docu-
mentation shows different kind of successfully, failing and erroneous requests, focusing on describing their objective and some
examples of response given when called. The documentation did not cover all of the errors addressed by the services, but only
one per category for each method supported by a certain endpoint. For example, for each endpoint, only one error for a ”missing
parameter” will be displayed, not covering all possible parameters requested by the method taken into account.

2.2 JSON specification, Error Handling and Testing

The JSend specification was adopted in order to have a standard for defining the JSON responses of the services developed.
The responses have a well define type (success, fail or error) and keys (data, code and message) that can be mandatory or
optional depending by the response’s type involved.

The errors, having an ”error” or ”fail” type depending by their nature (as defined in the JSend specification), were managed
in order to be self-explanatory on why there were triggered. They could regard both errors caused by users mistakes (for
example invoked by missing parameters or by calling a not existing endpoint) or by server failures (for example, when an
external service is down). The errors returned will be propagated all among the hierarchy of calls established by the Business
Logic Layer and the Process Centric one.

In order to perform testing for all the endpoints during their development, Postman tool was leveraged. MongoDB
Compass was used for testing the internal databases. Some flow testing has been performed with simulated crashes of

1

https://github.com/vicentinileonardo/daytrip
https://daytrip1.docs.apiary.io/
https://github.com/omniti-labs/jsend


some services, leveraging the Docker Compose GUI. For instance, stopping the Air Pollution API adapter will then led to a
ranked destinations list where that indicator is not considered when calculating the destinations rating.

2.3 Data Layer

MongoDB is used as internal databases for data related to Users and Destinations. CRUD operations on these NoSQL
databases are leveraging the Mongoose library for Node.js. The external data sources used are 8 (two of which are used directly
by the presentation layer): ip-api and ipify API for dealing with the IP address of the user (in presentation layer), EVA API
for the email validation, TomTom API, OpenStreetMap API and Google Maps for dealing with coordinates, Weather
API and OpenWeatherMap API for weather data.

2.3.1 TomTom APIs

Two external APIs provided by TomTom were used.
The first one was used in order to calculate the Reachable Range, returned as a boundary polygon, specifying an origin

and some parameters regarding the resources that a user has (e.g. time, distance, vehicle). The related adapter ’/ranges’ will
call the original API using only three arguments (lat, lon and timeBudgetInSec). It will be used in order to filter only the
destinations that can be reached by the users, avoiding to propose the other ones.

The second one was used in order to compute indirectly the crowdedness of a destination. This was possible by
comparing the currentSpeed and the freeFlowSpeed, given a couple of coordinates identifying a street. We have assumed that
the most those speed’s indicators are similar, the least crowded a place will be. The endpoint of its implemented adapter is
’/crowds’. This indication, when retrievable (so, when the origin given is not isolated and has a street in its proximity), is used
in a weighted way in order to compute an approval rating for the destinations filtered by ’/ranges’.

2.3.2 Weather APIs

Data used for the weather-related indicators, which have the largest share in forming the ranking, are pulled from external
web services: Weather API for dealing with temperature, precipitations and wind; OpenWeatherMap API for air quality.

2.4 Adapter Layer

The Adapter layer is mainly used for standardizing the data coming from the external APIs. Essentially, each service in this
layer corresponds to a service in the data layer. It is used to map the data coming from the external APIs to the data model
used in the application. For example, to make all the data sources compliant with the JSend specification of responses, some
encapsulation or tuning is needed.

This layer is also helpful for adding sensitive information such as API keys to the external API requests.

2.5 Business Logic Layer

The Business Logic layer is where calculation and elaboration of data happens. This layer consists of: Valid Email Service,
Coordinates Service, Reachable Destinations Service, Coordinates Rating Service, Boundary Service.

As an example, the Coordinates Rating Service performs calculations based on underlying data to provide a rating for
the coordinates provided. If some underlying services are not available (e.g. crashed) the rating is calculated using only the
available services and the weights are normalized accordingly.

2.5.1 Reachable destinations service and Boundary service

Initially, some reproducibility problems were encountered in the deployment of the Reachable Destination Service which leveraged
directly the Matplotlib Python library to check if a geospatial point lied inside the boundary of a reachable range. In order
to install it on a Docker container, its Dockerfile increase a lot in complexity (compared to the project’s standard) while its
deployment became more problematic with some specific system architectures.

This situation led to the design and implementation of a Boundary service, deployed outside the Docker environment. In
particularAmazon Web Services free tier were leveraged using aAWS Lambda Function (Serverless Function as-a-Service)
and AWS API Gateway with Lambda Proxy Integration.

As a result of this design decision, the deployment of the entire architecture has become smoother because the sole criticality
discovered has been fixed by creating a service, leveraging a powerful abstraction paradigm (FaaS), that is entirely managed by
a cloud provider.

2.6 Process Centric Layer

The Process Centric Layer provides high level functionalities that are the only ones that serves directly the users’ requests. The
services belonging to this layer are three:

• Best Destination Service: has the role, given an origin, a timeBudgetInHour, and a date, of ranking the destinations
reachable from the origin in the given time based on the information retrieved by the TomTom and Weather APIs.
The service has the role of Orchestrator, involving and combining the results given by the Reachable Destination, the
coordinates Service and the coordinates Rating Service.

2

https://developer.tomtom.com/routing-api/documentation/routing/calculate-reachable-range
https://developer.tomtom.com/traffic-api/documentation/traffic-flow/flow-segment-data
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/


• User Login Service: Orchestrator that directly involves the User DB Adapter in order to verify if the credentials
provided by the users are coherent with the profile of an already registered one. Doing that it allows to create or update
a signed JWT.

• User Registration Service: has the role of Orchestrator that checks and manipulates the values that it receives
during the registration of an user. Indeed, it involves the Valid Mail Service, the Coordinates Service and, if those calls
are successfully performed, it creates the users with a POST on the User DB Adapter.

2.7 Presentation Layer

To make the utilization of the underlying services practical, a simple yet effective frontend interface was designed. In
particular, Bootstrap framework was leveraged to build the three pages: main page, login, registration. As mentioned before,
two external services are directly called from this layer: an IP address retrieval service and Google Maps.

NGINX is mainly used to serve the static files (html, css, js, images). Moreover, NGINX reverse proxy capability is
leveraged to route the requests to the appropriate service only for request external to docker environment. It should be noted
that services talk to each other using the default docker network which is created when using a docker-compose file.

2.8 Authentication and Authorization

A basic authentication is provided by generating a signed JWT by passing a valid (email,password) couple at the endpoint
’/sessions’ using the GET method. The token generated contains in the payload the status (standard or admin), the id, the
email and the origin’s coordinates of the user authenticated. The token, if stored in the header as ”Authorization”, can be used
in order to authorize the access to different routes (PUT in ’/sessions’ and POST, PUT and DELETE in ’/destinations’). The
access of those endpoints in ’/destinations’ also checks the status of the user authenticated, that must be ”ADMIN”. The token
is also used to pre-fill the form on the frontend that invokes the Best Destination Service with its field ”origin”.

Figure 1: Architecture diagram

3 Conclusion

The scenario considered allowed to successfully use a service-oriented architecture in order to accomplish the set goal.
Indeed, it was possible to implement the application in a hierarchical structure of services, that are heterogeneous in the
purposes and in the programming languages used. The use of Docker Compose was a winning choice since it allowed a fast and
smooth configuration and deployment of all the services of the application.

Some further improvements that have been identified rely on the need of modifying the authentication service, by storing
the JWT generated in the session and not in the cookies in order to have a better server-side session control.

Several attempts have been made to deploy on the Microsoft Azure cloud. In particular, the services used were Azure
Container Instances and Azure App Service, as the different version of the Docker Compose configuration file testifies. Unfor-
tunately, despite most of the problems were solved and many hours were spent in troubleshooting, none of the above services
led to a working deploy.

3


	Introduction
	Architecture
	Endpoints
	JSON specification, Error Handling and Testing
	Data Layer
	TomTom APIs
	Weather APIs

	Adapter Layer
	Business Logic Layer
	Reachable destinations service and Boundary service

	Process Centric Layer
	Presentation Layer
	Authentication and Authorization

	Conclusion

